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Abstract.  20 

The Multi-Angle Imager for Aerosols (MAIA) satellite mission, to be jointly implemented by 
NASA and the Italian Space Agency with an expected 2026 launch, aims to study how different 
types of particulate matter (PM) pollution affect human health. The investigation will primarily 
focus on a discrete set of globally distributed Primary Target Areas (PTAs) containing major 
metropolitan cities, and will integrate satellite observations, ground observations, and chemical 25 
transport model (CTM) outputs to generate maps of near-surface total and speciated PM within 
the PTAs. In addition, the MAIA investigation will provide satellite measurements of aerosols 
over a set of Secondary Target Areas (STAs), which are useful for studying air quality more 
broadly. For the CTM, we have developed a Unified Inputs (of initial and boundary conditions) 
for WRF-Chem (UI-WRF-Chem) modeling framework to support the MAIA satellite mission. 30 
These developments include: (1) application of NASA GEOS FP and MERRA-2 data to provide 
both meteorological and chemical initial and boundary conditions for performing WRF-Chem 
simulations of air quality at a fine spatial resolution for both forecast and reanalysis modes; (2) a 
stand-alone emission preprocessor that ingests both global and regional anthropogenic emission 
inventories as well as fire emissions; (3) application of MODIS land data to improve land surface 35 
properties such as land cover type; (4) application of GLDAS and NLDAS data to constrain surface 
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soil properties such as soil moisture; (5) development of a new soil NOx emission scheme – the 
Berkeley Dalhousie Iowa Soil NO Parameterization (BDISNP). 
 
Here, we illustrate the model improvements because of these developments over four target areas: 40 
Beijing in China, CHN-Beijing (STA); Rome in Italy, ITA-Rome (PTA); Los Angeles in the U.S., 
USA-Angeles (PTA) and Atlanta in the U.S., USA-Atlanta (PTA). UI-WRF-Chem is configured 
as 2 nested domains using an outer domain (D1) and inner domain (D2) with a 12 km and 4 km 
spatial resolution, respectively. For each target area, we first run a suite of sensitivity simulations 
to test the model sensitivity to different options of physics schemes and then select the optimal 45 
combination of physics schemes based on evaluation of model simulated meteorology with ground 
observations. For the inner domain (D2), we have chosen to turn off the traditional Grell 3D 
ensemble (G3D) cumulus scheme. We conduct a case study over USA-Atlanta for June 2022 to 
demonstrate the impacts of cumulus scheme on precipitation and subsequent surface PM2.5 
concentration. Our results show that keeping the G3D cumulus scheme on results in higher 50 
precipitation and lower PM2.5 than the simulation with the G3D cumulus scheme off. Compared 
with surface observations of precipitation and PM2.5 concentration, the sensitivity simulation with 
the G3D scheme off shows better performance than keeping it on. We focus on two dust intrusion 
events over CHN-Beijing and ITA-Rome, which occurred in March 2018 and June 2023, 
respectively. We carry out a suite of sensitivity simulations using UI-WRF-Chem by excluding 55 
chemical boundary conditions or including MERRA-2 chemical boundary conditions. Our results 
show that using MERRA-2 data to provide chemical boundary conditions can help improve model 
simulation of surface PM concentration and AOD. Some of the target areas have also experienced 
significant changes in land cover and land use over the past decade. Our case study over CHN-
Beijing in July 2018 investigates the impacts of improved land surface properties with timely 60 
MODIS land data on capturing the urban heat island phenomenon. Model-simulated surface skin 
temperature shows better agreement with MODIS observed land surface temperature. The updated 
soil NOx emission scheme in July 2018 also leads to higher NO2 vertical column density (VCD) 
in rural areas over CHN-Beijing target area, which matches better with TROPOMI observed NO2 
VCD. This in turn affects the simulation of surface nitrate concentration. Lastly, we conduct a case 65 
study over USA-LosAngeles to tune the dust emissions. This gives an example to show the fine-
tuning work we do over each target area to investigate the problem specific to that target area as 
we continue evaluating and improving model performance.  

1. Introduction  

Ambient particulate matter (PM) pollution has been ranked as one of top environmental risk factors 70 
for global deaths (Forouzanfar et al., 2016). The integrated use of satellite and chemical transport 
model (CTM) outputs have shed light on the impacts of PM2.5 (PM with aerodynamic diameter 
less than 2.5µm) on public health in the past decade (Cohen et al., 2017; Wang et al., 2021a). 
Satellite retrieved aerosol data products such as aerosol optical depth (AOD) have been widely 
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used to estimate ground-level PM2.5 concentration over the past two decades (e.g. (Shin et al., 75 
2020; Van Donkelaar et al., 2006; Wang and Christopher, 2003)) due to its large spatial coverage. 
Because of the uncertainty in remote sensing technique and the complex AOD-PM2.5 relationship 
(Wang and Christopher, 2003), these satellite derived ground-level PM2.5 have been combined 
with ground observations of PM2.5 and/or CTM simulated PM2.5 to form a hybrid method of 
providing a new data source for epidemiological health studies (e.g. (Van Donkelaar et al., 2010; 80 
Holloway et al., 2021; Diao et al., 2019)). This hybrid method has also been used for estimating 
PM2.5 component concentration and its application in health-related studies (Philip et al., 2014; Li 
et al., 2021; Hu et al., 2019; Wei et al., 2023).  
 
The Multi-Angle Imager for Aerosols (MAIA) satellite mission to be jointly implemented by the 85 
National Aeronautics and Space Administration (NASA) (Diner et al., 2018) and the Italian Space 
Agency (ASI) has a key objective to map the PM composition and study the impacts of different 
types of PM on human health (Liu and Diner, 2017). The MAIA instrument builds upon the work 
of the Multi-angle Imaging SpectroRadiometer (MISR) instrument, onboard NASA’s Terra 
spacecraft, which has been retrieving aerosol properties including aerosol type since February 90 
2000 (Diner et al., 1998; Kahn et al., 2005). MISR has also been one of the commonly used satellite 
instruments for mapping global PM concentration for studying air quality and public health (Liu 
et al., 2009; Holloway et al., 2021; Meng et al., 2018). The MAIA investigation will focus on a set 
of primary target areas (PTAs) globally (https://maia.jpl.nasa.gov/mission/#target_areas), which 
are large metropolitan areas. For each PTA, it will integrate satellite observations, CTM outputs 95 
and ground observations to generate maps of surface total and speciated PM including sulfate, 
nitrate, dust, Organic Carbon (OC) and Black Carbon (BC) or Elemental Carbon (EC). In addition, 
the MAIA investigation will provide satellite measurements of aerosols over a set of Secondary 
Target Areas (STAs), which are useful for studying air quality more broadly. 
 100 
Our work here introduces the development of the Unified Inputs (of initial and boundary 
conditions) for WRF-Chem (UI-WRF-Chem) as the CTM for supporting the MAIA satellite 
mission, based on the standard WRF-Chem model (Fast et al., 2006; Grell et al., 2005). The major 
updates we have made include the following: (1) application of the NASA Goddard Earth 
Observing System (GEOS) products including both GEOS Forward Processing (FP) and Modern-105 
Era Retrospective Analysis for Research and Application, version 2 (MERRA-2) data to provide 
both meteorological and chemical initial and boundary conditions for performing WRF-Chem 
simulation with a finer spatial resolution in forecasting and reanalysis modes; (2) development of 
a stand-alone WRF-Chem Emission Preprocessing System (WEPS) that ingests both global and 
regional anthropogenic emission inventories as well as fire emissions; (3) application of Moderate 110 
Resolution Imaging Spectroradiometer (MODIS) land data to update land surface properties such 
as land cover type in WRF-Chem; (4) application of the Global Land Data Assimilation System 
(GLDAS) (Rodell et al., 2004) or the North American Land Data Assimilation System (NLDAS) 
(Mitchell et al., 2004) data to constrain soil properties such as soil moisture; and (5) development 
of a new soil NOx (NO + NO2)  emission scheme - the Berkeley Dalhousie Iowa Soil NO 115 
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Parameterization (BDISNP), based on the Berkeley Dalhousie Soil NO Parameterization 
(BDSNP) (Hudman et al., 2012).  
 
The new developments of UI-WRF-Chem are justified with the following consideration. First, the 
NASA GEOS system assimilates satellite observations of aerosol products (Randles et al., 2017). 120 
Using these assimilated data to provide chemical initial and boundary conditions for WRF-Chem 
simulations over MAIA target areas would be computationally efficient for capturing long-range 
or regional transport without enlarging the model domain to include the emission sources. A 
number of studies have demonstrated the influence of chemical boundary conditions on regional 
air pollution in the domain of interests when running WRF-Chem (e.g. (Mo et al., 2021; Ukhov et 125 
al., 2020; Roozitalab et al., 2021; Wang et al., 2004)). Second, anthropogenic and fire emissions 
play a crucial role in simulating aerosols in the CTM. Building our own emission preprocessor 
will allow us the opportunities to optimize the existing emission inventories and add new ones, 
especially those from top-down estimates (Wang et al., 2020b; Wang et al., 2020c). Third, some 
of the default land surface properties used in WRF-Chem such as land cover type have been out 130 
of date. Using MODIS land data to update land surface properties in a timely manner would help 
improve mesoscale model performances (Li et al., 2014; Li et al., 2017a; Aegerter et al., 2017; 
Wang et al., 2023). Fourth, soil properties such as soil moisture fields are of the high importance 
to both weather forecast, biogenic emission estimates and dust storm simulation (Han et al., 2021), 
and ultimately, air quality prediction (Thomas et al., 2019; Jenkins and Diokhane, 2017; De 135 
Rosnay et al., 2014). The GLDAS and NLDAS are two data assimilation systems that can offer 
optimized initial soil conditions with a high spatial and temporal resolution for numerical weather 
forecasting (Dillon et al., 2016; Xia et al., 2014). Better estimates of soil moisture will also lead to 
improved simulation of soil NOx emissions, which serve as an important part of the total global 
NOx budget (Jaeglé et al., 2005) and also play a critical role in the formation of ozone (O3) and 140 
nitrate aerosols (Sha et al., 2021; Lin et al., 2021). Lastly, the default soil NOx emissions in WRF-
Chem could be underestimated by a factor of 10 in some places (Oikawa et al., 2015). 
 
In this paper, we present the developments of the UI-WRF-Chem modeling framework and then 
illustrate the model improvement as the results of some of these developments as well as fine 145 
tuning over a specific target area. In this work, we focus on four target areas: Three of the target 
areas are PTAs: Rome in Italy (ITA-Rome), Los Angeles in the U.S. (USA-LosAngeles) and 
Atlanta in the U.S. (USA-Atlanta); one is a STA: Beijing in China (CHN-Beijing). Beijing was a 
PTA and has recently been changed to a STA. However, the case study over Beijing can still serve 
as a good example to demonstrate the model capability. These four target areas together have a 150 
good representation of the range of PM pollution levels across the target areas (Los Angeles and 
Atlanta on the lower end, Rome in the middle and Beijing on the higher end). Some of our previous 
work have focused on other PTAs using the UI-WRF-Chem modeling framework. Li et al. (2024) 
developed an inverse modeling method to improve the diurnal profile of anthropogenic emissions 
in Addis Ababa, Ethiopia PTA, using surface observations from both U.S. Embassy sites and 155 
PurpleAir sensors. Chutia et al. (2024) investigated the impacts of aerosol-radiation interaction on 
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air quality in Delhi, India PTA. Overall, current work together with previous work can provide a 
good picture of the model performance for different applications. This paper is organized as 
follows: Section 2 focuses on the description of the UI-WRF-Chem model development; Section 
3 provides the model configuration used in the target areas; Results and Conclusion are presented 160 
in Section 4 and Section 5, respectively.  

2. UI-WRF-Chem development  

UI-WRF-Chem uses the NASA GEOS model data to provide self-consistent and unified 
meteorological and chemical initial and boundary conditions for driving WRF-Chem simulations. 
UI-WRF-Chem can be run in both forecasting and reanalysis modes, which are driven by GEOS 165 
FP and MERRA-2 meteorology and aerosol fields, respectively. Both modes are needed because 
the former is used in MAIA’s near real time (NRT) data production, while the latter is used in 
MAIA’s reanalysis postprocessing data production.  

2.1 Unified Inputs (of initial and boundary conditions) for meteorology and chemistry 

Both GEOS FP and MERRA-2 data are generated within the GEOS atmospheric and data 170 
assimilation system (Rienecker et al., 2008), in which meteorological and aerosol observations are 
jointly assimilated. GEOS FP uses the most recent GEOS system to produce the real-time 
forecasting data while MERRA-2 uses a frozen version of the GEOS system to conduct the long-
term atmospheric reanalysis since 1980. The GEOS native model is on a cubed sphere grid with 
72 hybrid-eta layers from surface to 0.01 hPa. Products are saved on a 0.5º x 0.625º latitude by 175 
longitude grid for MERRA-2 and 0.25º x 0.3125º latitude by longitude for GEOS FP (Gelaro et 
al., 2017).  
 
MERRA-2 assimilates multiple streams of aerosol products including bias corrected AOD 
calculated from observed radiances measured by the Advanced Very High Resolution Radiometer 180 
(AVHRR) over ocean prior to 2002 and by MODIS on Terra and Aqua satellites over dark surfaces 
and ocean since 2000 and 2002, respectively; also assimilated are the MISR AOD over bright land 
surface and AOD measurements from Aerosol Robotic Network (AERONET) before 2014 
(Randles et al., 2017). In the NRT mode, GEOS FP only assimilates AOD derived from MODIS 
Terra and Aqua. The aerosol module used in the GEOS system is the Goddard Chemistry, Aerosol, 185 
Radiation, and Transport (GOCART) model (Colarco et al., 2010; Chin et al., 2002). The 
GOCART module simulates major aerosol species including sulfate, BC, OC, dust (five bins with 
lower and upper radius range as: 0.1–1, 1–1.8, 1.8–3, 3–6, 6–10 µm), and sea salt (five bins with 
lower and upper radius range as: 0.03–0.1, 0.1–0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm). These aerosol 
products are available in both GEOS FP and MERRA-2 products. Since 2017, nitrate aerosols 190 
have been added into the GEOS system and GEOS FP products thus include nitrate aerosols.  
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Our work differs from the past work that uses the GEOS FP or MERRA-2 data to drive WRF-
Chem in several aspects. For example, Peters-Lidard et al. (2015) presented the NASA Unified-
Weather Research and Forecasting model (NU-WRF) that can be driven by GEOS FP and 195 
MERRA-2, but its atmospheric chemistry process is simplified with the GOCART module 
(without prognostic simulation of aerosol size distribution and nitrate for example) and is designed 
to be an observation driven integrated modeling system that represents aerosol, cloud, 
precipitation, and land processes at satellite-resolved scales (~1–25 km). Hence, its real-time 
application for atmospheric chemistry and aerosol composition forecast is rather limited. 200 
Nevertheless, the NU-WRF’s concept and framework of using GEOS FP and MERRA-2 to drive 
WRF-Chem are adopted by UI-WRF-Chem development here to provide meteorological initial 
and boundary conditions for WRF-Chem, using meteorological variables other than soil properties.  
 
Adopting of GEOS FP or MERRA-2 soil properties into WRF-Chem needs special treatment. In 205 
the GEOS system, the land surface model (LSM) is a catchment-based model (Koster et al., 2000), 
which is fundamentally different from the LSMs available in WRF-Chem. The commonly used 
LSMs in WRF-Chem include the Noah scheme (Chen et al., 1996; Chen and Dudhia, 2001), the 
Rapid Update Cycle (RUC) (Smirnova et al., 2000), and the Community Land Model (CLM) 
(Oleson et al., 2004), which are all column-based models with different soil layers. To resolve this 210 
issue, Peters-Lidard et al. (2015) used the Land Information System (LIS) (Kumar et al., 2006) to 
process GEOS outputs and provide initial conditions of soil properties such as soil temperature 
and soil moisture for running WRF and NU-WRF (Kumar et al., 2008). Since land surface process 
is slow and usually requires years of LIS simulation to stabilize the soil properties in the model, 
we have here developed modules to utilize soil data products from two land data assimilation 215 
systems, GLDAS (Rodell et al., 2004) and NLDAS (Mitchell et al., 2004), which use LIS to focus 
on the analysis of soil properties in near real time. This way, we reduce the computational cost and 
complexity of running LIS within the UI-WRF-Chem. The initial conditions of soil properties can 
have an important impact on boundary layer processes for days to weeks (the so-called memory 
effect). Hence, the special treatment of soil properties by using observation-constrained GLDAS 220 
and NLDAS in UI-WRF-Chem is warranted.  
 
Our use of GEOS FP and MERRA-2 as UI-WRF-Chem chemical boundary conditions also differs 
from the common practice that is adopted by either Community Atmosphere Model with 
Chemistry, CAM-Chem (Emmons et al., 2020) for reanalysis or the Whole Atmosphere 225 
Community Climate Model (WACCM) (Gettelman et al., 2019) for NRT forecasts as WRF-
Chem’s chemical boundary conditions. Both CAM-Chem and WACCM don’t assimilate satellite-
based aerosol fields and therefore lack the observational constraints for the day-to-day change of 
aerosols concentration for a domain of interest.  
 230 
Finally, we have also developed a method to constrain the chemical boundary condition for the 
allocation of dust concentration in the MERRA-2 data as a function of different dust size bins. 
This method can be applied in areas where AERONET sites with long-term data are available. We 
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compare the dust particle size distribution (PSD) from MERRA-2 data with AERONET 
observations to better distribute the dust concentration into different size bins in the chemical 235 
boundary conditions. Detailed description and application of this approach are described in Sect 
4.1 and 4.2.  

2.2 Updates of land surface properties and soil NOx emission scheme 

We also develop capabilities within UI-WRF-Chem to update land surface properties in a timely 
manner. In the current work, we have selected the Noah LSM as the land surface model. MODIS 240 
land products are used to update the land surface properties including land cover type on the annual 
basis, green vegetation fraction (GVF), leaf area index (LAI) and surface albedo on the monthly 
basis in the Noah LSM. These variables are among the key surface properties in the land model 
that regulate the exchanges of energy, water, and momentum (Mölders, 2001). The major technical 
development and its application to study the impacts of land use/cover changes on urban 245 
temperature in Eastern China during 2003-2019 were described in Wang et al. (2023). Below we 
briefly describe the updates of each land surface property.  
 
The WRF-Chem model provides different sources of data for land surface properties. For land 
cover type, one is the U.S. Geological Survey (USGS) map with 24 land cover types, which is 250 
derived from the monthly AVHRR Normalized Difference Vegetation Index (NDVI) observations 
from April 1992 to March 1993. Another one is from the MODIS land cover data including 17 
land cover types, based on the International Geosphere-Biosphere Program (IGBP) scheme (Friedl 
et al., 2002) and three classes of tundra (Justice et al., 2002). Over the years, MODIS land cover 
data used in the WRF-Chem community have been updated for year 2001, 2004 or climatology 255 
data from 2001–2010 (Broxton et al., 2014). For GVF, the default one was derived based on the 
AVHRR NDVI observations collected from 1985 to 1990. Another option is to use the MODIS 
Fraction of Absorbed Photosynthetically Active Radiation (FPAR) (data are from the early 2000s) 
to substitute for GVF. For LAI and surface albedo, one option is to calculate the values online 
using the look-up table, based on each land cover type. Another option is to use the MODIS LAI 260 
and albedo data directly (data provided are from the early 2000s).  
 
Here, we have developed the capability to update all the four land surface properties in UI-WRF-
Chem via the WRF Preprocessing System (WPS) in a timely fashion. It provides self-consistence 
among the key land surface properties used in the land model as they come from the same satellite 265 
observations and offers a flexible way to apply the data for WRF-Chem simulations with different 
spatial resolution. The land cover data are updated with the MODIS yearly land cover type product 
(MCD12Q1) collection 6 with a spatial resolution of 500 m. The LSM scheme also allows the 
alternative use of satellite datasets for updating LAI, GVF and surface albedo. We develop two 
ways to update GVF in the model: (1) using the recent MODIS NDVI product (MOD13A3) to 270 
derive GVF; (2) using the Fraction of Photosynthetically Active Radiation absorbed by vegetation 
(FPAR) from MODIS MCD15A2H product to replace GVF. For LAI, we use the MODIS LAI 
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product (MCD15A2H) to update it in the model. For surface albedo, we have the option to use two 
MODIS data products to update it in the model: (1) using the MCD43A3 albedo products; (2) 
using the MODIS combined Terra and Aqua Bidirectional Reflectance Distribution Function 275 
(BRDF) and Albedo product (MCD43C3).  
 
The new BDISNP soil NOx emission scheme is also integrated as part of the UI-WRF-Chem 
framework. The detailed development of the scheme has been described in Sha et al. (2021) and 
Wang et al. (2021c). Briefly, in the standard WRF-Chem model, soil NOx emissions are calculated 280 
using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 
2006; Guenther et al., 2012), which is intended for estimating biogenic emissions of volatile 
organic compounds (VOCs). In the MEGAN model, emission factors are based on four global 
plant function types (broadleaf trees, needle-leaf trees, shrubs/bushes and herbs/crops/grasses). 
Previous work by Oikawa et al. (2015) has suggested that soil NOx emissions calculated from the 285 
MEGAN model using WRF-Chem can be a factor of 10 underestimated in the Imperial Valley, 
California, compared with ground observations. The BDSNP soil NOx emission scheme, currently 
implemented in the global 3-D GEOS-Chem model (Hudman et al., 2012), was added into the UI-
WRF-Chem, as the BDISNP, with several of our own updates.  
 290 
As in BDSNP, the BDISNP includes a more physical representation of the soil NOx emission 
process compared with the MEGAN model. The BDISNP considers available nitrogen (N) in soils 
from biome specific emission factors, online dry and wet deposition of N, and fertilizer and manure 
N. It also includes the pulsing of soil NOx emission following soil wetting by rain and the impacts 
of soil temperature and moisture. Compared to BDSNP, we have made four major updates in the 295 
BDISNP: (1) updating the land cover type data with the MODIS land cover type data to better 
reflect the land cover change; (2) using the GLDAS soil temperature data for calculating the soil 
NOx emissions rather than using the 2 m air temperature as a proxy for soil temperature; (3) using 
the modelled GVF data to determine the distribution of arid and non-arid regions to replace the 
static climate data used in the BDSNP scheme. With these three updates, Sha et al. (2021) has 300 
shown that the WRF-Chem simulation with the BDISNP scheme leads to a better agreement with 
TROPOMI retrieved NO2 columns over California for July 2018, compared with using the default 
MEGAN scheme. The increased soil NOx emissions with the BDISNP scheme result in a 34.7% 
increase in monthly mean NO2 columns and 176.5% increase in surface NO2 concentration, which 
causes an additional 23.0% increase in surface O3 concentration in California. The work of Zhu et 305 
al. (2023) used derived soil NOx flux measurements from a field Campaign over the San Joaquin 
Valley in California during June 2021 to evaluate three soil NOx emission schemes: the MEGAN 
in the California Air Resource Board (CARB) emission inventory, the Biogenic Emission 
Inventory System (BEIS) and the BDISNP developed here. It was found that both MEGAN and 
BEIS inventories were lower than the observation by more than one order of magnitude, and the 310 
BDISNP was lower by a factor of 2.2. Even though being underestimated, the BDISNP and the 
observation showed a similar spatial pattern and temperature dependence.  
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The fourth update revises the default soil temperature response function in the BDISNP scheme, 
as described in Wang et al. (2021c). In the default scheme, the soil temperature response follows 315 
an exponential function for soil temperature between 0 °C and 30 °C and stays the same as 30 °C 
after the soil temperature is above 30 °C. In the work of Oikawa et al. (2015), which found high 
soil NOx emissions in high-temperature agricultural soils, an observation-based soil temperature 
response function was developed. This function is used here to update the default soil temperature 
response function. Specifically, in the range of 20 °C and 40 °C, it is a cubic function of soil 320 
temperature. When soil temperature is greater than 40 °C, the value of the response function is set 
the same as the value of soil temperature at 40 °C. In addition, final soil NOx emissions are reduced 
by 50% following the work of Silvern et al. (2019) and Vinken et al. (2014). With this update, 
Wang et al. (2021c) showed that the GEOS-Chem simulated tropospheric NO2 vertical column 
densities (VCDs) agrees better with Ozone Monitoring Instrument (OMI) observed NO2 VCDs for 325 
2005–2019 summer in the U.S., compared with the GEOS-Chem simulation that uses the default 
soil temperature function. This model improvement further helps explain the slowdown of 
tropospheric NO2 VCD reduction during 2009–2019 observed by OMI in the U.S.  

2.3 WRF-Chem Emission Preprocessing System (WEPS)  

The WEPS Fortran utility is developed to map both global and regional anthropogenic emissions 330 
as well as fire emissions for running UI-WRF-Chem simulations. WEPS builds upon a few tools 
used in the WRF-Chem community (https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-
community). For example, the anthro-emiss utility creates WRF-Chem ready emission files from 
global anthropogenic emission inventory datasets. There is also another Fortran program 
(emission_v3.F) to process the U.S. EPA National Emissions Inventory (NEI) 2005 and 2011. 335 
Recently, a new tool EPA_ANTHRO_EMIS has been developed to create WRF-Chem ready 
anthropogenic emission files from Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling 
System netcdf outputs for NEI 2014 and 2017. We have adopted some of the functionalities in 
these tools into the WEPS.  
 340 
Currently in WEPS, we can ingest the following global anthropogenic emission inventories: (1) 
HTAP_v2.2 (Janssens-Maenhout et al., 2015) and HTAP_v3 (Crippa et al., 2023), created under 
the umbrella of the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), which is 
the compilation of different emission inventories over specific regions (North America, Europe, 
Asia including Japan and South Korea) with the independent Emissions Database for Global 345 
Atmospheric Research (EDGAR) inventory filling in for the rest of the world; (2) EDGARv5.0 
for year 2015 (Crippa et al., 2020). The HTAP_v3 includes regional emission inventories from 
U.S. EPA NEI, CAMS-REGv5.1 for Europe, the Regional Emission inventory in Asia 
(REASv3.2.1), the Clean Air Policy Support System (CAPSS-KU) inventory over South Korea, 
the JAPAN emission inventory (PM2.5EI and J-STREAM) in Japan and EDGARv6.1 350 
(https://data.jrc.ec.europa.eu/dataset/df521e05-6a3b-461c-965a-b703fb62313e) for the rest of the 
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world. It consists of 0.1 ° x 0.1 ° grid maps of species: CO, SO2, NOx, non-methane volatile organic 
compound (NMVOC), NH3, PM10, PM2.5, BC and OC for year 2000–2018 (Crippa et al., 2023). 
Four sectors are included for these species: energy (mainly power industry), industry 
(manufacturing, mining, metal, cement, etc.), transport (ground transport such as road) and 355 
residential (heating/cooling of buildings etc.). For NH3, an additional sector – agriculture is also 
included. The datasets have a monthly temporal resolution, and we have interpolated them to daily 
data. In addition, we have added sector-based diurnal profiles following the work of Du et al. 
(2020). For UI-WRF-Chem simulation over the U.S. domain or China domain, we have added the 
capability to use U.S. EPA NEI 2017 or the Multi-resolution Emission Inventory model for 360 
Climate and air pollution research (MEIC) (Zheng et al., 2018; Li et al., 2017b) emission inventory 
to replace the global emission inventory HTAP_v3, respectively.  
 
For fire emissions, the WEPS can process several emission inventories as described in Zhang et 
al. (2014). They include: Fire Locating and Modeling of Burning Emissions inventory (FLAMBE) 365 
(Reid et al., 2009); Fire INventory from NCAR version 1.0 (FINN v1.01) (Wiedinmyer et al., 
2011); Global Fire Emission Database version 3.1 (GFED v3.1) (Van Der Werf et al., 2010); Fire 
Energetics and Emissions Research version 1.0 using fire radiative power (FRP) measurements 
from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (FEER-SEVIRI 
v1.0) (Roberts and Wooster, 2008; Ichoku and Ellison, 2014); Global Fire Assimilation System 370 
(GFAS v1.0) (Kaiser et al., 2012); NESDIS Global Biomass Burning Emissions Product (GBBEP-
Geo) (Zhang et al., 2012); Quick Fire Emissions Dataset version 2.4 (QFED v2.4) (Darmenov and 
Da Silva, 2015). Our recent work involves developing a Visible Infrared Imaging Radiometer Suite 
(VIIRS) based fire emission inventory, FIre Light Detection Algorithm (FILDA-2) (Zhou et al., 
2023). Our past work has mainly focused on OC and BC emissions from FLAMBE emission 375 
inventory (e.g. (Ge et al., 2014; Zhang et al., 2022; Zhang et al., 2020)). We have now included 
gas species such as CO from FLAMBE emission inventory. The injection height by default is set 
to range from 500 m to 1200 m, based on our previous work (e.g. (Yang et al., 2013; Wang et al., 
2013; Ge et al., 2017)) and users have the option to specify the injection height on their own.  

2.4 WRF-Chem chemistry description and update  380 

The MAIA investigation not only focuses on the total PM2.5 and PM10 mass but the speciated PM2.5 
including sulfate, nitrate, BC or EC, OC and dust. We have therefore selected the Regional Acid 
Deposition Model, Version 2 (RADM2) for gas-phase chemistry (Stockwell et al., 1990) and the 
Modal Aerosol Dynamics model for Europe (MADE) (Ackermann et al., 1998) and the Secondary 
ORGanic Aerosol Model (SORGAM) (Schell et al., 2001) as the aerosol module for MAIA model 385 
simulations, using WRF-Chem Version v3.8.1. The RADM2-MADE/SORGAM chemistry 
mechanism in WRF-Chem simulates the above-mentioned aerosol species and has been widely 
used to study air quality (e.g. (Georgiou et al., 2018; Zhang et al., 2020; Tuccella et al., 2012)). 
The MADE/SORGAM aerosol module also includes ammonium, sea salt and water. The aerosol 
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size distribution is represented by the modal approach (Binkowski and Shankar, 1995), which uses 390 
three modes (the Aitken, accumulation and coarse mode). A log-normal size distribution and 
internal mixing of aerosol species are assumed in each mode.  
 
In the MADE/SORGAM aerosol scheme, dust is not explicitly simulated but rather blended into 
other species. For smaller size bins of dust, they are represented by the unspecified PM2.5 chemical 395 
species, which have Aitken and accumulation modes. For larger size bins of dust, they are counted 
as the “soila”, which are used for coarse soil-derived aerosol species. To output the dust proportion 
of the surface PM2.5 mass concentration, we add dust species in five size bins (same as the 
GOCART dust bins in MERRA-2) into the MADE/SORGAM aerosol scheme. This way, when 
using MERRA-2 or GEOS FP to provide chemical initial and boundary conditions, the dust species 400 
from the boundary file can be consistent with the dust species in the aerosol scheme. WRF-Chem 
currently provides three dust emission schemes: the original GOCART dust emission scheme 
(Ginoux et al., 2001), GOCART dust emission with the Air Force Weather Agency (AFWA) 
modifications (Legrand et al., 2019), and the University of Cologne (UOC) scheme (Shao et al., 
2011). Both GOCART and GOCART-AFWA emission schemes release dust in five size bins with 405 
lower and upper radius range of 0.1–1, 1–1.8, 1.8–3, 3–6, 6–10 µm, same as the dust size bin used 
in the MERRA-2 system. The UOC dust emission scheme considers dust in four size bins with 
lower and upper radius range of 0–1.25, 1.25–2.5, 2.5–5, and 5–10 µm. Here, we have selected the 
use of GOCART-AFWA emission scheme in the UI-WRF-Chem framework, which matches the 
dust size bins in the MERRA-2 and GEOS FP aerosol scheme.  410 
 
Subsequently, a new chemistry scheme (MADE/SORGAM-DustSS) is created in UI-WRF-Chem 
to include the dust in five size bins and sea salt aerosols as additional chemical tracers while all 
other gas and aerosol species are the same as in the MADE/SORGAM scheme. The standard WRF-
Chem model currently supports the GOCART sea salt emission scheme, which releases sea salt 415 
aerosol species in four bins. The lower and upper radius range of sea salt aerosols species are: 0.1–
0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm. We have then added sea salt aerosols in these four bins into the 
MADE/SORGAM-DustSS scheme in the UI-WRF-Chem framework. The GOCART sea salt 
aerosols in MERRA-2 data have five bins with lower and upper radius range as: 0.03–0.1, 0.1–
0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm. This way, the GOCART sea salt aerosols in the aerosol scheme 420 
would also match the aerosols in the chemical boundary file provided by MERRA-2 data. In the 
newly added scheme of MADE/SORGARM-DustSS, we have followed the simple GOCART 
aerosol scheme in the standard WRF-Chem model to add different transport processes for dust and 
sea salt aerosol species such as dry deposition. We have also added a simple wet scavenging 
scheme for dust and sea seal aerosols, which is described more in Sect 4.2.  425 
 
Aerosol optical properties such as extinction and single scattering albedo are calculated based on 
a sectional approach (Barnard et al., 2010) with 8 bins in WRF-Chem, regardless of the aerosol 
scheme selected. For aerosol species in the MADE/SORGAM-DustSS aerosol scheme, the mass 
and number concentrations of each aerosol species in the three modes will be matched to the 8 430 
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bins. For dust and sea salt aerosol species, the dust and sea salt aerosols in their original 5 and 4 
bins, are matched to the 8 bins. In each bin, the particles are assumed to be internally mixed and 
spherical. The bulk properties such as refractive index for each bin is based on volume 
approximation. Then, Mie theory is called to calculate the optical properties such as the absorption 
efficiency and asymmetry parameter for each bin. The optical properties are computed and 435 
outputted at four wavelengths (300, 400, 600 and 1000 nm). In addition, the work of Ukhov et al. 
(2021) has found a few inconsistencies in WRF-Chem related to dust emissions coupled with the 
GOCART aerosol module, which also impacts other aerosols schemes such as the 
MADE/SORGAM module. These inconsistencies were found in the calculation of surface PM2.5 
and PM10 concentration, calculation of aerosol optical properties and estimation of gravitational 440 
settling. We have incorporated the corrections of these inconsistencies made by Ukhov et al. 
(2021) in our UI-WRF-Chem framework.  

2.5 Postprocessing and evaluation code, and repository management  

Python modules are developed in house to postprocess UI-WRF-Chem hourly outputs as part of 
the UI-WRF-Chem framework. They include diagnostics of some commonly used variables which 445 
are not directly outputted such as relative humanity (RH) and the capability to extract and compile 
hourly model output into daily output to facilitate file management. We have also created python 
modules to evaluate UI-WRF-Chem model performance against ground observations and satellite 
data, e.g., comparing model simulated column concentration of trace gases NO2 with satellite 
observed column concentration of NO2. In addition, bash scripts are developed to automatically 450 
run UI-WRF-Chem framework for both forecasting and reanalysis modes. It needs minimal work 
to specify the paths of the codes and data on the servers before running the UI-WRF-Chem model. 
The UI-WRF-Chem framework uses the GitHub, a git-based version control system to manage its 
codes and developments. The repository stores the main codes of UI-WRF-Chem. When major 
developments from our group and collaborators are made and validated, a new version will be 455 
released. The WRF-Chem community also updates the WRF-Chem code and releases new 
versions periodically, we will also check the major bug fixes and developments to incorporate 
them in our codes accordingly.  

3. Model configuration 

All the UI-WRF-Chem model simulations for MAIA target areas are set up as 2 nested domains 460 
(Fig 1) with a 4 km x 4 km horizontal spatial resolution for the inner domain (D2) focusing on the 
MAIA target area and a 12 km x 12 km horizontal spatial resolution for a larger outer domain 
(D1). The inner and outer domain have nominal dimension of ~360 km (east-west) x 480 km 
(north-south) and ~1080 km (east-west) x 1000 km (north-south), respectively. Both domains have 
48 vertical levels extending from the surface to 50 hPa. For the inner domain (D2), we have turned 465 
off the cumulus scheme to let the model fully resolve the convective process while all other model 
configurations are the same for both domains. 
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Figure 1. Terrain height for (a) CHN-Beijing, (b) ITA-Rome, (c) USA-LosAngeles and (d) USA-Atlanta target areas of the 2 nested 
domains: the outer domain (D1) and the inner domain (D2) shown as the white box. For (a), the orange filled triangles represent 470 
the ground observation sites of PM2.5 and PM10 mass concentration. Both open magenta squares and stars represent the AERONET 
ground observation sites. The sites denoted by the stars are used to constrain the dust particle size distribution as described in Sect 
4.1 while the sites denoted by squares are used to evaluate model simulated AOD. (b) is same as (a), except that the orange open 
circles represent ground observations of PM10 mass concentration, and orange filled triangles are the ground observations sites of 
PM2.5 mass concentration. (c) is the same as (b) except that the orange box is defined as the dust-prone region, which is used to 475 
tune dust emissions. For (d), the orange filled triangles represent the ground observation sites of PM2.5 mass concentration.  

For each target area, we first run a suite of sensitivity simulations to test the model sensitivity to 
different options of the physics schemes by evaluating model simulated meteorology variables 

https://doi.org/10.5194/egusphere-2025-1360
Preprint. Discussion started: 5 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

14 

with ground observations and then select the optimal combination of physics schemes based on 
evaluation results. A description of the satellite and ground observation datasets used are provided 480 
in Text S1 of the supporting information (SI). Several statistics are used to evaluate the model 
performance against ground and satellite observations, including linear correlation coefficient (R), 
root mean square error (RMSE), mean bias (MB), normalized mean bias (NMB), normalized 
standard deviation (NSD) and normalized centered root mean square error (NCRMSE). NSD is 
the ratio of the standard deviation of the model simulation to the standard deviation of the 485 
observation. NCRMSE is like RMSE except that the impact of the bias is removed. Some of the 
aforementioned statistics are summarized in a Taylor Diagram (Taylor, 2001), which includes R 
(shown as the cosine of the polar angle), NSD (shown as the radius from the quadrant center), and 
NCRMSE (shown as the radius from the expected point, which is located at the point where R and 
NSD are unity).  490 
 

 
Figure 2. Taylor Diagrams for evaluating UI-WRF-Chem model simulated (a) meteorological variables (t2, dewt2 or RH, wspd10 
and pres) with ground observations for CHN-Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta target areas, and (b) surface 
skin temperature (TSK) with MODIS observed land surface temperature (LST) for CHN-Beijing during July 2018. In (a), 495 
evaluation results of daily meteorology variables are based on the model final configuration for each target area (Sect 3). Color bar 
represents the ratio between model results and ground observations. In (b), USGS and updated refer to the UI-WRF-Chem 
sensitivity simulations 2N_def (default USGS land cover type and subsequently derived GVF, LAI and albedo) and 2N_upd 
(updated land cover type, GVF, LAI and albedo with 2018 MODIS land data) in Table 1, respectively. UI-WRF-Chem simulated 
TSK averaged over the Terra and Aqua overpass time during daytime (TD and AD) and nighttime (TN and AN), respectively are 500 
compared to the corresponding Terra and Aqua observations. Color bar represents the normalized mean bias (NMB) between model 
results and satellite observations.  
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There are many physics schemes that can be used in WRF-Chem. We select the commonly used 
schemes for each target area based on literature review and our previous work (e.g. (Yang et al., 
2013; Sha et al., 2021; Zhang et al., 2022)). We also consider a few other factors as described 505 
below. For the cumulus scheme, we consider the Grell 3D ensemble (G3D, (Grell and Dévényi, 
2002)) scheme, which also accounts for cloud radiation feedback. With the current version of the 
code, regardless of which cumulus scheme is used, the chemistry will be transported using the 
G3D scheme while other scalars are transported with the selected cumulus scheme. Therefore, the 
G3D scheme is used to ensure the consistency between chemistry and physics. For model spatial 510 
grids greater than 10 km, they usually rely on the cumulus parameterization to determine the 
subgrid convective processes. For model spatial grids smaller than 10 km, it is generally 
considered as the convective gray zone, where the use of convective parameterization or explicit 
resolving treatment of the convective process remains to be an ongoing question (Jeworrek et al., 
2019). Typically, for model spatial grids larger than 5 km, convective parameterization has been 515 
used in regional model studies (e.g. (Zhang and Mcfarlane, 1995; Clark et al., 2009; Dudhia, 
2014)). For model spatial grids smaller than 5 km, generally considered convection-permitting 
scale, numerous regional model studies have suggested to turn off the cumulus scheme (e.g. (Prein 
et al., 2015; Wang et al., 2021b; Weisman et al., 1997; Weisman et al., 2008; Done et al., 2004; 
Gao et al., 2017)), especially if the cumulus scheme is not scale-aware (Wagner et al., 2018). 520 
Therefore, we have chosen to turn off the cumulus scheme here for the inner domain (D2) with the 
4 km spatial resolution. Future work will explore the use of a scale-aware cumulus schemes such 
as the Grell-Freitas scheme (GF, (Grell and Freitas, 2014)) after incorporating the fix of including 
transport of the chemistry by the GF scheme when GF is selected, as described by Li et al. (2018, 
2019). 525 
 
For the microphysics scheme, an inexpensive scheme is typically sufficient for model spatial grids 
greater than 10 km but a more complex scheme that accounts for the prediction of the mixed phases 
(6-class schemes, including graupel) and number concentrations (double-moment schemes) is 
required (Han et al., 2019). Therefore, we consider these three schemes in the current work: the 530 
Lin scheme (Lin et al., 1983; Chen and Sun, 2002), the WRF Single-Moment 6-Class 
Microphysics Scheme (WSM6) (Hong and Lim, 2006) and the Morrison scheme (Morrison et al., 
2009). The former two is a single-moment 6 class scheme and the latter one is a double-moment 
scheme, which also predicts the number concentration of the hydrometer besides the total amount. 
All of the three schemes include the simulations of graupel which is shown to help with the 535 
simulation of convection for higher resolution simulation (Brisson et al., 2015). At convective-
permitting scales, the graupel size representation could play a more important role in the 
precipitation prediction than the number of moments (single .vs. double) in certain cases (Adams-
Selin et al., 2013).  
 540 
For the shortwave radiation scheme, we only consider the two-stream multiband Goddard scheme 
(Chou et al., 1998) and the Rapid Radiative Transfer Model for GCMs (RRTMG) (Iacono et al., 
2008), which both include the direct aerosol radiation feedback. For the longwave radiation, we 
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select the RRTMG and the Rapid Radiative Transfer Model (RRTM) schemes (Mlawer et al., 
1997). RRTMG for both shortwave and longwave radiation schemes are recommended to pair 545 
together in the model by the developing team of WRF-Chem. For the planetary boundary layer 
(PBL) scheme and the corresponding surface layer scheme, we consider the nonlocal boundary 
layer scheme – the Yonsei University scheme (YSU, (Hong et al., 2006)) with the revised fifth-
generation Pennsylvania State University – National Center for Atmospheric Research Mesoscale 
Model (MM5) (Grell et al., 1994; Jiménez et al., 2012) surface layer scheme. We also consider 550 
two commonly used local boundary layer schemes: Mellor-Yamada-Janjic (MYJ, (Janjic, 2001)) 
with the ETA similarity surface layer scheme; Mellor-Yamada-Nakanishi-Niino level 2.5 
(MYNN2.5, (Nakanishi and Niino, 2004)) with the MYNN surface layer scheme. When using the 
YSU scheme, we also turn on the surface drag parameterization (Jiménez and Dudhia, 2012) to 
improve topographic effects on surface winds over complex terrain. The land surface model is the 555 
Noah land model (Chen and Dudhia, 2001), which incorporates our updates of the land surface 
properties as described in Sect 2.2. Additionally, for a specific target area, other physics schemes 
not mentioned here but commonly used in that area will also be tested.  
 
Details regarding the selection and evaluation results of the physics scheme for the four target 560 
areas are available in Text S2 of the SI. Here, we provide a summary of the evaluation results. 
Sensitivity simulations performed for each target area are listed in Table S1 and we focus on the 
testing of the following schemes: microphysics, shortwave and longwave radiation and PBL. We 
evaluate four UI-WRF-Chem simulated meteorology variables with surface observations: air 
temperature at 2m (t2), dew temperature at 2m (dewt2) or relative humidity (RH), wind speed at 565 
10m (wspd10) and sea level pressure (pres). Results of the hourly or 3-hourly evaluation of the 
meteorology variables are summarized in Table S2 and Fig S1. Overall, all the sensitivity 
simulations of t2 and pres for all the target areas show the highest correlation (> 0.8). Dewt2 or 
RH also show good correlation (0.59 – 0.84) with ITA-Rome showing the lowest correlation. The 
case study of ITA-Rome is conducted over June 2023, where some areas in Italy experienced 570 
rainfall events about one third of the month. Uncertainties of UI-WRF-Chem capturing the rainfall 
events (discussed in Sect 4.2) could result in the lower correlation of RH. Comparatively, wspd10 
shows lower correlation (0.22 – 0.52) with USA-Atlanta showing the lowest correlation. Across 
the target areas, we find that wspd10 is most sensitive to PBL scheme compared with other 
schemes tested, which is also found in previous studies (e.g. (Yu et al., 2022)). It is found that no 575 
single combination of the physics scheme will result in the best performance for each meteorology 
variable evaluated. The interaction of these different parametrized processes mentioned above (e.g. 
convection, boundary layer mixing, microphysics and radiation) are complex (Prein et al., 2015) 
and it is region, case and variable specific. Therefore, model performance can vary from region to 
region or case to case.  580 
 
Based on the evaluation results, we select the optimal combination of various physics schemes 
tested as the final configuration for each target area. Since MAIA will use daily averaged data for 
product generation, we also summarize the statistics of the evaluation of the daily meteorology 
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variables for the four target areas in Fig 2(a), for the final configuration only. We find that UI-585 
WRF-Chem simulated daily t2, dewt2 and pres all show high correlation (> 0.7) and low NMB ((–
10%) – (+ 10%)) across the target areas. For evaluation of daily wspd10, correlation increases, and 
bias decreases compared with hourly evaluation. For USA-Atlanta, the daily wspd10 still shows 
lower correlation (~0.25) compared with other target areas. The sensitivity simulation of USA-
Atlanta is conducted over June 2022 and majority of the wspd10 are under 5 m s-1. It can be 590 
challenging for the model to capture this stable condition very well. Future work could focus on 
trying nudging with ground observation to improve the model performance over this area. We also 
recognize that our sensitivity tests are limited to one month for each target area. We are not able 
to test the performance for different seasons. Nevertheless, it provides values for understanding 
the model sensitivity to different schemes at different locations.  595 
 
Biogenic emissions for VOCs are from the MEGAN scheme and soil NOx emissions are from the 
BDISNP scheme. Fire emissions are from the FLAMBE emission inventory and dust emissions 
use the GOCART with AFWA modification. Here, we use MEIC 2016 as the anthropogenic 
emission for CHN-Beijing and NEI 2017 emission inventory for USA-LosAngeles and USA-600 
Atlanta. The HTAP_v3 2018 is used for ITA-Rome. The gas phase chemistry is the RADM2, and 
the aerosol module is the newly added scheme MADE/SORGAM-DustSS: the MADE/SORGAM 
scheme with the addition of dust and sea salt aerosol species as described in Sect 2.4.  

4. Case studies for different target areas  

4.1 Case study – CHN-Beijing  605 

Beijing and its surrounding area in China, are affected by both local and regional emissions as well 
as long-range transport (Wu et al., 2021; Zhang et al., 2018). In recent decades, the North China 
Plain including the Beijing area has experienced severe PM pollution problems as a result of the 
rapid economic growth and urbanization (Zhang et al., 2016). In addition to the impacts of 
anthropogenic emission on surface PM levels, strong dust storms from the Taklamakan Desert and 610 
the Gobi Desert sometimes can be transported downwind to the Beijing area and affect local air 
quality in the springtime. Here for the CHN-Beijing target area (Fig 1(a)), we first focus on a dust 
intrusion event during 24–31 March 2018, to study the impacts of chemical boundary conditions 
on surface PM. Figure 3 shows the MODIS Aqua observed AOD over part of China for the period 
of this event. The dust storm can be seen on 26 March 2018, at both the Taklamakan and Gobi 615 
Deserts and by 28 March, strong dust clouds have been transported to Beijing and its surrounding 
areas. Figure S2 displays the movement of surface observations of daily PM10 mass concentration 
across China from 24 March to 31 March 2018. On 27 March and 28 March 2018, high surface 
PM10 concentration were observed in Beijing, Tianjin and Hebei province with hourly 
concentration exceeding 1000 µg m-3 (not shown here). Then, we focus on July 2018 to study the 620 
impacts of updating land surface properties and soil NOx emission scheme on model performances.  
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Figure 3. (a)–(h) MODIS Aqua Deep Blue (DB) AOD from 24–31 March 2018. The white boxes represent the UI-WRF-Chem 2 
nested domains for outer (D1) and inner domain (D2) over CHN-Beijing, respectively. The white diagonal lines indicate the 625 
CALIOP tracks. The magenta contour lines represent the Taklamakan and Gobi Deserts.  

4.1.1 Sensitivity experiment design  

For CHN-Beijing target area, we carry out a suite of sensitivity simulations using the UI-WRF-
Chem framework as shown in Table 1 to investigate the impacts of chemical boundary conditions, 

https://doi.org/10.5194/egusphere-2025-1360
Preprint. Discussion started: 5 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

19 

updated land surface properties and soil NOx emission scheme on model performance. First, three 630 
simulations are conducted during March 2018 to study the impacts of using MERRA-2 data to 
provide chemical boundary conditions on model performance. Additionally, four simulations are 
carried out for July 2018 to investigate the impacts of updating land surface properties as well as 
surface soil NOx emission scheme. The simulation with “2N_def” uses the default USGS land 
cover type and subsequently derived GVF, LAI and albedo, using a predefined look-up table. The 635 
simulations with “2N_upd” uses the corresponding updated land cover type, GVF, LAI and albedo, 
based on the 2018 MODIS land data products for the simulation period, as described in Sect 2.2. 
The simulations with “2N_*_snox*” use our newly developed BDISNP soil NOx emission scheme.  
 
Table 1. A suite of UI-WRF-Chem sensitivity simulations with different chemical boundary conditions, land data and soil NOx 640 
emission schemes for CHN-Beijing.  

simulation namea land datab soil NOx 
emissionc 

species considered in 
the chemical 
boundaryd 

 simulation 
timee 

 

2N_upd_snox-none updated BDISNP none  03/2018  
2N_upd_snox-dust updated BDISNP dust + other aerosols  03/2018  

2N_upd_snox-dust PSD updated BDISNP dust PSD + other 
aerosols  

 03/2018  

       
2N_def USGS Guenther dust + other aerosols  07/2028  
2N_upd updated Guenther dust + other aerosols  07/2018  

2N_upd_MEGAN updated MEGAN dust + other aerosols  07/2018  
2N_upd_BDISNP  updated BDISNP dust + other aerosols  07/2018  

aThe simulation name starting with “2N*” refers to the 2 nested domains used for CHN-Beijing as shown in Fig 1(a). The 2 nested 
domains have a horizontal spatial resolution of 4 km x 4 km and 12 km x 12 km for the inner and outer domain, respectively.  

bWe test different land surface properties used for the UI-WRF-Chem static input data. The simulation name with “*def*” refers 
to the use of USGS land cover type data and subsequently derived GVF, LAI and albedo, with a predefined look-up table. The 645 
simulation name with “*upd*” refers to the use of updated land cover type, GVF, LAI and albedo data with 2018 MODIS land data 
products.  

cWe test different soil NOx emission schemes. The Guenther scheme calculates biogenic emissions including soil NOx emissions, 
without any external input datasets needed. The MEGAN scheme requires external input files to calculate biogenic emissions 
including soil NOx emissions. The BDISNP is our newly developed scheme. Since the USGS land data is only compatible with the 650 
Guenther scheme, we conduct sensitivity simulations “2N_def” and “2N_upd” to evaluate the impacts of updating land surface 
properties. The simulation name with “*snox*” means that the BDISNP soil NOx emission scheme is used.  

dWe test different scenarios of chemical species used in MERRA-2 data for updating UI-WRF-Chem chemical boundary 
conditions. “None” (simulation name with “*none*”) means that chemical boundary conditions from MERRA-2 data are not used. 
“dust + other aerosols” (simulation name with “*dust*”) means that dust and other aerosols including sulfate, BC and OC are 655 
considered in the chemical boundary conditions from MERRA-2 data. “dust particle size distribution (PSD) + other aerosols” 
(simulation name with “*dust PSD*”) is the same as “dust + other aerosols” except that we use the ratio of averaged PSD from 
AERONET observations and MERRA-2 data over 2000–2020 to scale the dust concentration for each size bin in the MERRA-2 
data. More details can be found in Sect 4.1.1. 

eWe conduct the sensitivity simulations in two different time periods: March and July 2018, respectively. The simulations in March 660 
focus on evaluating the impacts of using MERRA-2 data to provide chemical boundary conditions on model performance while 
the simulations in July focus on the impacts of updating land surface properties with MODIS data and soil NOx emission scheme.  
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The impacts of chemical boundary conditions are evaluated from several sensitivity experiments. 
In the simulation “2N_upd_snox-none”, no chemical species from MERRA-2 data are transported 
into the domain. In the simulation “2N_upd_snox-dust”, dust and other aerosols including sulfate, 665 
BC and OC are considered in the chemical boundary condition from MERRA-2 data. Furthermore, 
to constrain the chemical boundary condition for the allocation of dust concentration as a function 
of different size bins, we analyze the AERONET measured aerosol volume size distribution 
(AVSD) data from 2000 to 2020. If the fine mode fraction (FMF) of AOD at 500 nm is less than 
0.3 (Lee et al., 2017), it is considered as a dust event. Figure 4(a) shows the averaged dust particle 670 
size distribution (PSD) over the AERONET sites between 2000–2020 from both AERONET and 
MERRA-2 data for all the dust events that occurred in CHN-Beijing. The ratio between the mean 
of the AERONET PSD and MERRA-2 PSD for each of the five dust size bins is then used as a 
constraint to scale the dust concentration in each bin in the MERRA-2 chemical boundary data. 
The sensitivity run “2N_upd_snox-dust PSD” in Table 1 is based on this result.  675 
 

 
Figure 4. Averaged particle size distribution (PSD) from AERONET observations (blue line) and MERRA-2 data (the 5 colored 
bins) for (a) CHN-Beijing and (b) ITA_Rome over 2000–2020 and 2000–2023, respectively. The AERONET sites used are 
shown as the stars in Fig 1(a) and (b), respectively. The dark gray areas represent the AERONET variability. AERO-mean and 680 
MERRA-2 mean represent the fraction of the PSD from each bin over the sum of the 5 bins. Ratio-mean is the ratio of the total 
PSD of AERONET over MERRA-2 for each bin.  

Three UI-WRF-Chem sensitivity simulations in Table 1 are run from 18 March to 31 March 2018, 
for evaluating the impacts of using MERRA-2 data to provide chemical boundary conditions. The 
simulation results with the first 6 days are used as initialization. Model output from 24 March to 685 
31 March 2018, are used for analysis, unless noted otherwise. The rest of the four simulations are 
used for evaluating the impacts of updating land surface properties and soil NOx emission scheme 
on model performance. They are carried out from 24 June to 31 July 2018, and model outputs from 
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1 July to 31 July are used for data analysis. We mainly use model output from the inner domain 
(D2) for data analysis unless noted otherwise.  690 

4.1.2 Impacts of chemical boundary conditions on surface PM and AOD  

 
Figure 5. Scatter plot of hourly surface PM2.5 concentration between model (y axis) and ground observation (x axis) for surface 
sites in the inner domain (D2) of CHN-Beijing for 24–31 March 2018. (a)–(c) refer to the UI-WRF-Chem sensitivity simulations 
with different chemical boundary conditions being considered using MERRA-2 data (Table 1). (a) no chemical species, (b) dust 695 
and other aerosols and (c) same as (b) except that the dust concentration is scaled based on constraining MERRA-2 dust PSD 
data with AERONET PSD climatology data. (d) is from MERRA-2 simulated surface PM2.5 concentration. Also shown on the 
scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean ± standard deviation for observed (x) 
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and model-simulated surface PM2.5 (y), the number of collocated data points (N), the density of points (the color bar), the best fit 
linear regression (the solid black line) and the 1:1 line (the dashed black line).  700 
 
First, we evaluate the effectiveness of using MERRA-2 data to provide chemical boundary 
conditions in capturing this dust long-range transport event in spring 2018. Figure 5 shows the 
overall evaluation of model simulated hourly surface PM2.5 mass concentration against ground 
observations over PTA-Beijing during 24-31 March 2018. Results are presented for three 705 
sensitivity experiments, as described in section 4.1.1. Without considering any chemical species 
in the boundary, the UI-WRF-Chem simulated PM2.5 concentration (2N_upd_snox_none) 
underestimates ground observations with a MB of -59.3 µg m-3. After including dust and other 
aerosols in the boundary conditions, the UI-WRF-Chem simulated PM2.5 concentration 
(2N_upd_snox_dust) increases from 27.9 µg m-3 to 44.3 µg m-3 and thus reduces the MB to -42.9 710 
µg m-3. Correlation (R) also improves with an increase from 0.27 to 0.47. By constraining the dust 
PSD in the MERRA-2 data with the climatology data from AERONET, the UI-WRF-Chem 
simulated PM2.5 (2N_upd_snox_dust PSD) further improves the model performance with MB of 
-17 µg m-3 and R of 0.52. It also outperforms the MERRA-2 simulated surface PM2.5 concentration 
(MB of -33.7 µg m-3 and R of 0.39).  715 
 
Figure 6(a) and Figure S3 show the time series of hourly surface PM2.5 and PM10 concentration 
from 24–31 March 2018 for both model simulations and ground observations. During 27–28 
March, when the dust front intruded PTA-Beijing, hourly observations of surface PM2.5 and PM10 
concentration averaged over all the sites could reach approximately 150 and 900 µg m-3, 720 
respectively. The UI-WRF-Chem simulation without chemical boundary conditions 
(2N_upd_snox_none) misses this peak for both PM2.5 and PM10 while both the UI-WRF-Chem 
simulation with chemical boundary condition (2N_upd_snox_dust) and MERRA-2 data capture 
this peak for PM2.5 but miss the peak for PM10. The UI-WRF-Chem simulation with dust PSD 
constrained (2N_upd_snox_dust PSD) capture both the peak of PM2.5 and PM10. Compared with 725 
the simulation without boundary conditions (2N_upd_snox_none), adding chemical boundary 
conditions (2N_upd_snox_dust) improves model performance with increased correlation for both 
PM2.5 (0.41 to 0.72) and PM10 (0.06 to 0.23). The simulation with dust PSD constrained 
(2N_upd_snox_dust PSD) does not improve the correlation of PM2.5 (0.65) but does for PM10 
(0.28), compared with the simulation using dust in the chemical boundary (2N_upd_snox_dust). 730 
 
Not only does considering chemical boundary conditions improve surface PM mass concentration, 
it also helps with the total aerosol column amount and vertical distribution. First, Figure 6(b)–(d) 
shows the AOD evaluation between model simulations and AERONET observations. Without 
considering boundary conditions, the UI-WRF-Chem simulation (2N_upd_snox_none, 0.05) 735 
significantly underestimates the AERONET observed AOD (0.73) and shows poor correlation 
(0.02). Including dust and other aerosols (2N_upd_snox_dust) enhances UI-WRF-Chem simulated 
AOD (0.29) and correlation (0.79). Overall, constraining the dust in the boundary 
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(2N_upd_snox_dust PSD) shows the best performance with simulated AOD of 0.93 and 
correlation of 0.83.  740 
 

 
Figure 6. (a) time series of hourly surface PM2.5 concentration averaged over surface sites in the inner domain (D2) of CHN-
Beijing for 24–31 March 2018, from model simulations and ground observations. 2N_upd_snox-none/dust/dust PSD refer to the 
UI-WRF-Chem sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 data 745 
(Table 1): no chemical species; dust and other aerosols; dust concentration is scaled based on constraining MERRA-2 dust PSD 
data with AERONET PSD climatology data. Also shown on the plot is the mean ± standard deviation of surface PM2.5 for model 
simulations or observations as well as the correlation coefficient (R). (b)–(d): scatter plot of hourly AOD between model (y axis) 
and AERONET observation (x axis) for 24–31 March 2018. Also shown on the scatter plot is R, the root-mean-square error 
(RMSE), the mean ± standard deviation for observed (x) and model-simulated AOD (y), the number of collocated data points 750 
(N), the best fit linear regression (the solid black line) and the 1:1 line (the dashed black line).  

We then compare the UI-WRF-Chem simulated vertical aerosol profile with the Cloud-Aerosol 
Lidar with Orthogonal Polarization (CALIOP) data for the outer domain (D1) during 26–28 
March, when dust reaches the PTA-Beijing domain. Figure 7 shows the CALIOP derived aerosol 
extinction coefficient, aerosol type as well as UI-WRF-Chem simulated extinction coefficient. The 755 
CALIOP ground tracks are located within the UI-WRF-Chem outer domain (D1) (Fig 3) and 
model grids that overlap with the tracks are selected. From both the CALIOP aerosol extinction  
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Figure 7. Comparison of CALIOP–derived vertical profile of aerosol extinction coefficient (532 nm, (a)–(c)) and aerosol type 
((d)–(f)) with UI-WRF-Chem simulated extinction coefficient for CHN-Beijing over 26–28 March 2018. UI-WRF-Chem outputs 760 
are from the outer domain (D1) that overlap with CALIOP tracks (Fig 3). (g)–(i) are the extinction coefficients from the UI-
WRF-Chem sensitivity simulation 2N_upd_snox-dust, where dust and other aerosols are considered in the MERRA-2 chemical 
boundary conditions. (j)–(l) are the extinction coefficients from UI-WRF-Chem sensitivity simulation 2N_upd_snox-dust PSD 
where dust concentration is scaled in the MERRA-2 chemical boundary conditions, based on constraining MERRA-2 dust PSD 
data with AERONET PSD climatology data. In (a)–(f), the gray areas represent cloud. In (d)–(f), different aerosol types are 765 
classified: d mari for dusty marine, p dust for polluted dust, c cont for clean continental, p cont for polluted continental, c mari for 
clean marine. ND includes areas that have clean air and aerosol type not being determined. 
 
coefficient and aerosol type, we can see that dust is dominating the vertical distribution above ~3–
4 km and mixed with marine and anthropogenic aerosols in the boundary layer. Without 770 
considering aerosols in the chemical boundary conditions, the UI-WRF-Chem simulated 
extinction coefficient is negligible above the boundary layer (not shown here). After considering 
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dust and other aerosols in the chemical boundary conditions, we can see the increase in the 
extinction coefficient in the vertical distribution (Fig 7(g)–(i)). Constraining the dust in the 
boundary (2N_upd_snox_dust PSD, Fig 7(j)–(l)) further enhances the vertical distribution of the 775 
aerosol extinction coefficient, which matches better with the CALIOP observations. This reflects 
the effectiveness of including dust and other aerosols in the chemical boundary condition to better 
capture the vertical distribution of aerosol properties in this dust intrusion event. We note that 
CALIOP data is also subject to uncertainties of the lidar ratio used in deriving the extinction, and 
so is the extinction modeled by UI-WRF-Chem (Yang et al., 2013). Hence, CALIOP data is used 780 
as a relative reference to assess the model improvement. 
 
Since PTA-Being is located downwind of the dust source regions in this case, there could be 
uncertainties in simulating the transport of different dust size bins in MERRA-2 data from source 
regions. Thus, our constraining method could provide an effective way to improve the dust size 785 
distribution in the boundary conditions and subsequently improve model simulated surface PM 
concentration as well as vertical distribution of aerosols. This method could also benefit other 
PTAs such as ITA-Rome, that can be affected by dust transport events, which will be discussed in 
Sect 4.2.  

4.1.3 Impacts of updated land surface properties on model performance   790 

The UI-WRF-Chem model simulated surface skin temperature (TSK) is evaluated with satellite 
observations of land surface temperature (LST) from MODIS onboard Terra and Aqua for July 
2018. We first regrid the MODIS daily LST data into the WRF-Chem model grids. The Beijing-
Tian-Hebei region is one of the highly urbanized clusters in the world and has experienced intense 
urban heat island (UHI) effects in the past decade (Wang et al., 2016; Clinton and Gong, 2013). 795 
First, by comparing the default and updated land cover type (Fig 8(a) and Fig 8(f)), we can see that 
the updated land cover type captures the urban growth over the region. The corresponding land 
surface properties including LAI, GVF and albedo also show changes with the updated data (Fig 
S4). Both daytime (~10:30 am and ~1:30 pm LT) (Fig 8(b) and Fig S5(a)) and nighttime (~10:30 
pm and ~1:30 am LT) (Fig 8(g) and Fig S5(e)) LST from MODIS Terra and Aqua show the UHI 800 
phenomenon over the region. Our UI-WRF-Chem model simulated TSK with updated land surface 
properties can capture the UHI spatial pattern with higher temperature in urban areas than rural 
areas for both daytime and nighttime. It matches the spatial pattern of satellite observed LST UHI 
better than the UI-WRF-Chem simulation with use of the default USGS land cover type and other 
surface properties, which is consistent with our previous work (Wang et al., 2023). Figure 2(b) 805 
shows the Taylor Diagram of comparing UI-WRF-Chem simulated LST with MODIS Terra and 
Aqua daytime and nighttime, respectively. We find that the UI-WRF-Chem simulated TSK with 
updated land surface properties decreases the relative bias for both Terra and Aqua daytime and 
nighttime, compared with the UI-WRF-Chem simulation using the default USGS land surface 
properties. The model simulated TSK with updated land surface properties also results in an 810 
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increase in correlation for the Aqua daytime period compared with the model simulation using the 
USGS land surface properties.  
 

 
Figure 8. Comparison of UI-WRF-Chem simulated surface skin temperature (TSK) with MODIS Terra observed land surface 815 
temperature (LST) for CHN-Beijing in July 2018. (a) and (f) are the land cover type from the default USGS data and the updated 
data with 2018 MODIS land data. (b) and (g) are the MODIS Terra LST during daytime (D) and nighttime (N), respectively. (c) 
and (d) are model simulated TSK averaged over Terra overpass time during daytime from UI-WRF-Chem sensitivity simulations 
2N_def (default USGS land cover type and subsequently derived GVF, LAI and albedo) and 2N_upd (updated land cover type, 
GVF, LAI and albedo with 2018 MODIS land data) in Table 1, respectively. (e) is the ratio between (d) and (c). (h)–(j) are the 820 
same as (c)–(e) but averaged over Terra overpass time during nighttime. Oceans are masked as grey colors on the plots for (b)–
(e) and (g)–(j).  

Figure S6 shows the potential impacts of updated land surface properties on model simulated 
planetary boundary layer height (PBLH) and subsequently on surface PM2.5 concentration. We 
find that the PBLH mainly increases in the urban areas where the land surface temperature 825 
increases, which in turn leads to a decrease in surface PM2.5. Our work shows the promising use 
of updated land surface properties with timely satellite data to better capture the land cover type 
and other land surface properties for areas with fast urban development. To better study the impacts 
of UHI in the region, urban canopy model could be used to include more details about the 
underlying urban surface feature and better simulate the physical processes in the boundary layer 830 
(He et al., 2019; Liang et al., 2021) with a finer spatial resolution, which is beyond the scope of 
the current work.  
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4.1.4 Impacts of updated soil NOx emission scheme on model performance 

Our previous work (Sha et al., 2021) has shown the improvement of model simulated NO2 VCD, 835 
when evaluated against TROPOMI NO2 VCD over croplands in California, using the BDISNP 
soil NOx emission scheme. Here, we also use TROPOMI NO2 VCD to evaluate UI-WRF-Chem 
simulated NO2 VCD over croplands in the outer domain (D1) of CHN-Beijing for July 2018. Daily 
TROPOMI NO2 data are regridded to UI-WRF-Chem grids with averaging kernels being applied. 
Hourly data from UI-WRF-Chem output, close to the TROPOMI overpass time (~1:30 PM LT) 840 
are averaged to compare with TROPOMI data. First, Figure S7 shows the UI-WRF-Chem 
simulated monthly mean soil NOx emissions using the default emission scheme – MEGAN 
(2N_upd_MEGAN in Table 1) and the updated scheme – BDISNP (2N_upd_BDISNP in Table 
1), respectively. The MEGAN scheme (Fig S7(a)) simulates low soil NOx emissions over the 
whole domain and the BDISNP (Fig S7(b)) instead simulates higher soil NOx emissions in non-845 
urban areas. Croplands show the largest soil NOx emissions due to the use of fertilizer.  
 

 
Figure 9. Monthly mean NO2 tropospheric vertical column density (VCD) over the outer domain (D1) of CHN-Beijing for July 
2018 from TROPOMI observation and model sensitivity simulations. Only model grids identified as croplands are shown on the 850 
plots. (a) TROPOMI observations; (b) UI-WRF-Chem sensitivity simulation 2N_upd_MEGAN in Table 1 using the MEGAN 
scheme to calculate soil NOx emissions; (c) UI-WRF-Chem sensitivity simulation 2N_upd_BDISNP in Table 1 using the BDISNP 
scheme to calculate soil NOx emissions. The white box represents the inner domain (D2) of CHN-Beijing. 

Then, we compare the model simulated tropospheric NO2 VCD with TROPOMI NO2 VCD for 
July 2018 (Fig 9 and Fig 10). We can find that both simulations underestimate TROPOMI NO2 855 
VCD (2.2 x 1015 molecules cm-2) by 1.4 x 1015 and 1.3 x 1015 molecules cm-2 for the MEGAN and 
BDISNP respectively (Fig 10(a) and (b)) over the whole domain. Over croplands, we can see the 
enhancement in the model simulated NO2 VCD (Fig 9(c)). The model simulated NO2 VCD 
increases from 1.4 x 1015 using the MEGAN scheme to 1.7 x 1015 molecules cm-2 using the 
BDISNP scheme. The BDISNP decreases MAE from 1.59 x 1015 molecules cm-2 to 1.53 x 1015 860 
molecules cm-2 over the whole domain mainly due to the improvement over croplands. MAE for 
croplands decreases from 1.88 x 1015 molecules cm-2 to 1.77 x 1015 molecules cm-2 (Fig 10(c) and 
(d)). The increase in soil NOx emissions has potential impacts on surface nitrate. Figure S8 shows 
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that the increase in surface soil NOx emissions leads to the increase in surface nitrate up to 30% in 
rural areas. Due to the lack of surface observation of nitrate, we are limited to quantify the impacts 865 
of the improvement of soil NOx emissions on surface nitrate. The MAIA satellite mission coupled 
with the Geostationary Environment Monitoring Spectrometer (GEMS) (Kim et al., 2020) satellite 
mission could provide a synergetic opportunity to evaluate both gas and aerosol chemistry.  
 

 870 
Figure 10. Scatter plot of daily tropospheric NO2 VCD between model (y axis) and TROPOMI observation (x axis) over the outer 
domain (D1) of CHN-Beijing for July 2018. (a) and (c) refer to the UI-WRF-Chem sensitivity simulation using the MEGAN 
scheme (2N_upd_MEGAN in Table 1) and (b) and (d) refer to the sensitivity simulation using the BDISNP scheme 
(2N_upd_BDISNP in Table 1) to calculate soil NOx emissions, respectively. (a) and (b) are for model grids over the whole 
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domain while (c) and (d) are for model grids that are identified as croplands. Also shown on the scatter plot is the correlation 875 
coefficient (R), the mean absolute error (MAE), the mean ± standard deviation for observed (x) and model-simulated 
tropospheric NO2 VCD (y), the number of collocated data points (N), the density of points (the color bar), the best fit linear 
regression (the solid black line) and the 1:1 line (the dashed black line).  

4.2 Case study – ITA-Rome 

Our case study over CHN-Beijing target area has demonstrated the benefits of using MERRA-2 880 
data to provide chemical boundary conditions for capturing long-range transport events such as 
dust intrusion. Some of the other target areas including ITA-Rome are also impacted by dust 
transport. Saharan dust transport poses a significant concern on air quality in Europe and the 
Mediterranean Basin. Previous work has shown that Saharan dust outbreaks are more frequent in 
southern Europe including Italy than northern Europe (Querol et al., 2009; Viana et al., 2014; Pey 885 
et al., 2013; Wang et al., 2020a). For example, Pey et al. (2013) showed that across the 
Mediterranean Basin, African dust outbreaks occurred from 30% to 37% of the annual days in the 
southern sites and less than 20% of the days in the northern sites. The work of Barnaba et al. (2022) 
investigated the impacts of African dust on surface PM10 concentrations in Italy using surface 
monitoring sites in Italy from 2006-2012 and found that African dust affected surface PM10 levels 890 
in Northern and Southern Italy for about 10% and 30% of dates in a year, respectively.  
 
Here, we focus on June 2023, where Saharan dust affected the PM concentration in ITA-Rome, 
and investigate the benefits of using MERRA-2 data to provide chemical boundary conditions for 
driving UI-WRF-Chem. For example, one Saharan dust intrusion into Italy occurred from 19–22 895 
June 2023 as seen from the VIIRS AOD (Fig S9) and MERRA-2 simulated dust AOD also captures 
this dust intrusion event (not shown here). We conduct three UI-WRF-Chem model sensitivity 
simulations with different chemical boundary conditions to evaluate model simulated surface PM 
concentration and AOD: (1) simulation “2N-none”: no chemical species from MERRA-2 data are 
transported into the domain; (2) simulation “2N-dust”: dust and other aerosols including sulfate, 900 
BC and OC are considered in the MERRA-2 chemical boundary condition; (3) simulation “2N-
dust PSD”: dust concentration of different size bins in the MERRA-2 boundary conditions is 
constrained using the AERONET PSD climatology data from 2000–2023. AERONET sites close 
to the Saharan dust source region are used for constraining MERRA-2 PSD (Fig 1(b)). Figure 4(b) 
shows the averaged PSD over the AERONET sites between 2000–2023 from both MERRA-2 and 905 
AERONET data. The ratio between the mean of the AERONET PSD and MERRA-2 PSD for each 
of the five dust size bins is then used as a constraint to scale the dust concentration in each bin in 
the MERRA-2 chemical boundary data in the simulation “2N-dust PSD”.  
 
Like the case study in CHN-Beijing, using MERRA-2 data to provide chemical boundary 910 
conditions for UI-WRF-Chem over ITA-Rome also improves both model simulated surface PM 
concentration and AOD (Fig 11). Overall, for the whole month of June, the correlation R from the 
sensitivity run 2N-none increases from 0.10 to 0.47, 0.46 to 0.61, and 0.15 to 0.62 for surface 
PM2.5, surface PM10 and AOD, respectively compared with the sensitivity simulation 2N-dust. The 
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MB decreases from –7.2 to –2.5 µg m-3, –14.8 to –2.2 µg m-3, and –0.23 to –0.13 for surface PM2.5, 915 
PM10 and AOD respectively. Using constrained dust concentration in the MERRA-2 data (2N-dust 
PSD) further reduces the MB for surface PM2.5 and AOD and slightly overestimates surface PM10, 
compared with simulation 2N-dust. In contrast, Both MERRA-2 simulated surface PM2.5 and PM10 
overestimates surface observations with MB of 6.4 µg m-3 and 21.8 µg m-3, respectively. UI-WRF-
Chem simulated surface PM2.5 and PM10 have slightly lower correlation than MERRA-2 data but 920 
has much lower MB than MERRA-2 data, when evaluated against ground observations. During 
June 2023, some parts of the ITA-Rome domain experienced precipitation events (Fig S10), which 
occurred mostly during the first half of the month. Compared to the Global Precipitation 
Measurement Missions (GPM) observed precipitation and MERRA-2 simulated precipitation (Fig 
S10), UI-WRF-Chem simulates higher precipitation, which could result in higher wet deposition 925 
of aerosols and lower concentration. Figure S11 shows the comparison of model simulated surface 
daily PM2.5 and PM10 with ground observations for the first and second half of the month in June 
2023, respectively. We can see that UI-WRF-Chem simulation 2N-dust underestimates both 
surface PM2.5 and PM10 during the first half of the month (Fig S11(a)–(h)) with MB of –3.0 and –
5.5 µg m-3, respectively, while MERRA-2 overestimates surface PM2.5 and PM10 with MB of 5.1 930 
and 15.7 µg m-3, respectively. During the second half of the month (Fig S11(i)–(p)), UI-WRF-
Chem simulation 2N-dust underestimates surface PM2.5 with MB of –2.0 µg m-3 but slightly 
overestimates surface PM10 with MB of 0.7 µg m-3. MERRA-2 still overestimates surface PM2.5 

and PM10 with MB of 7.4 and 28.4 µg m-3, respectively. Due to the coarse spatial resolution of 
MERRA-2 data, it may not resolve the localized convective processes well, which could affect the 935 
subsequent wet deposition. There are also uncertainties associated with the dust size distribution 
in MERRA-2 data, which could also play a role in the wet deposition.  
 
Additionally, uncertainty in UI-WRF-Chem model simulated wet deposition of aerosols could also 
play a role in the model results discussed above. Previous work has mostly focused on dry dust 940 
events (e.g. (Zeng et al., 2020)), and less has focused on the wet dust events, especially dust wet 
deposition. Jung and Shao (2006) implemented a below-cloud dust wet deposition scheme for the 
UOC dust emission scheme in WRF-Chem. Currently, no dust wet scavenging scheme is 
implemented for the original GOCART or GOCART AFWA dust scheme in WRF-Chem. As in 
previous work (Su and Fung, 2015), we have implemented a simple scheme to allow dust wet 945 
scavenging by large scale and convective precipitation by assigning a scavenging efficiency for 
different dust size bins in the model. Future work will focus on implementing a more complex dust 
wet deposition scheme to better account for the scavenging process that consider the dust particle 
size distribution etc., such as the work of Tsarpalis et al. (2018) and Zhao et al. (2003). 
Nevertheless, the case study over ITA-Rome again demonstrates the benefits of using MERRA-2 950 
data to drive UI-WRF-Chem for capturing the dust transport event.  
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Figure 11. Scatter plot of daily PM2.5 concentration ((a)–(d)), PM10 concentration ((e)–(h)), and AOD ((i)–(l)), between model (y 
axis) and ground observation (x axis) over the inner domain (D2) of ITA-Rome for June 2023. (a)–(c), (e)–(g), and (i)–(k) refer 955 
to the UI-WRF-Chem sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 
data. 2N-none: no chemical species; 2N-dust: dust and other aerosols; 2N-dust PSD: same as 2N-dust except that the dust 
concentration is scaled based on constraining MERRA-2 dust PSD data with AERONET PSD climatology data. (d), (h) and (l) 
show the MERRA-2 simulated daily PM2.5, PM10 and AOD, respectively. Also shown on the scatter plot is the correlation 
coefficient (R), the root-mean-square error (RMSE), the mean ± standard deviation for observed (x) and model-simulated 960 
PM2.5/PM10/AOD (y), the number of collocated data points (N), the best fit linear regression (the solid black line) and the 1:1 line 
(the dashed black line).  

4.3 Case study – USA-LosAngeles and USA-Atlanta 

Each target area has its unique feature of aerosol composition and various factors that affect the 
aerosol concentration, we have demonstrated the impacts of dust transport on surface PM 965 
concentration and AOD over CHN-Beijing and ITA-Rome target areas. Here, we focus on some 

https://doi.org/10.5194/egusphere-2025-1360
Preprint. Discussion started: 5 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

32 

fine tuning or testing over USA-Los Angeles and USA-Atlanta target areas to improve the model 
simulation of surface PM concentration and AOD.  

4.3.1 USA-LosAngeles 

For the USA-LosAngeles target area (Fig 1(c)), we investigate the impacts of dust emissions on 970 
surface PM concentration and AOD. Part of the outer domain (D1) over the USA-LosAngeles 
target area (here defined as the dust-prone region, the orange box in Fig S12), located in the 
southwestern U.S. are desert regions with higher soil erodibility than other parts of the domain. It 
is common in WRF-Chem to tune some of the parameters in the dust emission scheme including 
the soil erodibility to better match model simulated PM10 concentration and AOD with satellite- 975 
and ground-based observations (e.g. (Su and Fung, 2015)). This approach has been mainly 
focusing on the total atmospheric dust load instead of an individual dust event and it is sufficient 
to capture the general magnitude of dust aerosol patterns. We have adopted this simple approach 
here to do some dust parameter tuning to improve model simulated surface PM10 concentration 
and AOD with a focus on the overall magnitude.  980 
 

 
Figure 12. Scatter plot of daily surface PM10 concentration and hourly AOD between model (y axis) and ground observation (x 
axis) over the dust-prone region in USA-LosAngeles for July 2018. (a)-(i) are for surface daily PM10 and (j)-(r) are for hourly 
AOD from two groups of sensitivity simulations: (1) gamma = 1, 1.5, 2, 2.5, 3 while alpha stays as 1; (2) alpha = 0.2, 0.3, 0.4, 0.5 985 
while gamma stays as 1, respectively. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error 
(RMSE), the mean ± standard deviation for observed (x) and model-simulated surface PM10/AOD (y), the number of collocated 
data points (N), the best fit linear regression (the solid black line) and the 1:1 line (the dashed black line).  
 
There are several parameters that can be used to tune dust emissions in the WRF-Chem model. 990 
One is the dust_gamma (gamma for short here), which tunes the soil erodibility in an exponential 
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manner. Soil erodibility serves as an important factor for identifying dust source and estimating 
dust emission flux in the model. The other one is the dust_alpha (alpha for short here), which 
linearly tunes the total dust emissions. If we use the default setting (gamma=1, alpha = 1), both 
model simulated surface daily PM10 concentration and hourly AOD overestimate surface 995 
measurements of PM10 and AOD in the dust-prone region (Fig 12(a) and (j), Fig S13 and S14). 
Model simulated surface PM2.5 concentration also overestimates surface measurements of PM2.5 
(Fig S13 (a)). We conduct two groups of sensitivity simulations to test the responses of model 
simulated PM10 and AOD to a range of gamma and alpha values, respectively. For the first group 
test, we set the gamma with 1.5, 2, 2.5 and 3 respectively, while keeping alpha value as 1. For the 1000 
second group test, we set the alpha with 0.2, 0.3, 0.4, and 0.5 respectively, while keeping gamma 
value as 1. As gamma increases from 1 to 3 with the constant alpha value of 1, correlation increases 
for AOD and decreases for surface PM10 (Fig 12). MB and RMSE also decreases with increasing 
gamma value until when gamma value increases to 2.5 for both AOD and PM10. As alpha decreases 
from 1 to 0.2 with the constant gamma of 1, both MB and RMSE for surface PM10 and AOD 1005 
decrease until alpha value drops to 0.3. The correlation almost stays the same or slightly increases 
for both PM10 and AOD with decreasing alpha value. Therefore, we choose gamma of 1 and alpha 
of 0.3 as the final configuration to account for the model performance of both PM10 and AOD.  
 
Here, we use one month of data to tune the dust emissions by focusing on the magnitude of the 1010 
total dust load. It is challenging to fine tune each individual dust event and acquire consistent 
results. The work of Hyde et al. (2018) simulated nine dust storms in south-central Arizona with 
WRF-Chem using the GOCART AFWA dust emission scheme and the model unevenly 
reproduced the dust-storm events with some cases overestimating surface PM10 and some cases 
underestimating surface PM10. Our evaluation of AOD with AERONET observation is rather 1015 
limited spatially as we only have one AERONET site for the dust-prone region. We also conduct 
the same set of sensitivity simulations for July 2019 (results not shown here) and the sensitivities 
to the tuned parameters are comparable to the results of 2018 in general, which further confirms 
the validity of the simple approach we have used here. Additionally, more recent work have 
incorporated the albedo-based drag partition (Chappell and Webb, 2016) from satellite data into 1020 
the GOCART AFWA dust emission scheme to better represent the impacts of roughness features 
from vegetation and non-vegetation such as soil and rocks and demonstrated improved model 
performance in capturing individual dust event over the Southwestern U.S. (Legrand et al., 2023; 
Dhital et al., 2024). It is beyond the scope of this work to implement this method, but future work 
could explore the use of this advanced method and focus on longer periods of model simulation to 1025 
further evaluate model performances.  
 

4.3.2 Case study – USA-Atlanta  

As described in Sect 3, for the standard PTA nested domain setup, we have chosen to turn off the 
cumulus parameterization in the inner domain (D2) with the spatial resolution of 4 km and let the 1030 
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model rely on the microphysics scheme to explicitly resolve the convection. Southeastern U.S. 
including the PTA-Atlanta (Fig 1(d)) target area experiences pulse-type summer convective 
precipitation due to the interplay of land-sea breezes, outflow boundaries and complex terrain etc. 
(Case et al., 2011). Here, we focus on June 2022 over PTA-Atlanta to demonstrate the impacts of 
different setups of microphysics and cumulus schemes on model simulated precipitation and 1035 
subsequent surface PM2.5 concentration. We perform six UI-WRF-Chem sensitivity simulations 
with different setups of microphysics and cumulus schemes while keeping other schemes the same: 
(1) mp2cu5: Both domain 1 and domain 2 have the Lin microphysics scheme on. Domain 1 and 
domain 2 have the G3D cumulus scheme on and off, respectively; (2) mp2cu5bothon: same as (1) 
except that both domain and 1 and domain 2 have the G3D cumulus scheme on; (3) mp2cu3bothon: 1040 
same as (2) except that both domain 1 and domain 2 have the GF cumulus scheme on; (4) mp10cu5; 
(5) mp10cu5bothon; and (6) mp10cu3bothon. (4)-(6) are the same as (1)-(3) except that both 
domain 1 and domain 2 have the Morrison microphysics scheme on. Here, the difference between 
(1) and (2) illustrates the impacts of turning on/off the cumulus scheme at the 4 km resolution. The 
difference between (1), (2) and (1), (3) evaluates the impacts of using a traditional cumulus scheme 1045 
vs. a scale-aware cumulus scheme. Corresponding difference between (1)-(3) and (4)-(6) 
represents the impacts of the microphysics scheme.  
 
We first focus on the evaluation of daily precipitation. Although, hourly precipitation rate can be 
important to tell the intensity of the precipitation event, verification of the hourly precipitation can 1050 
raise double-penalty issues at the finer resolution (Rossa et al., 2008; Gilleland et al., 2009), where 
a slight shift in the prediction of the timing or location of the precipitation event compared with 
the ground truth could result in the verification penalties in both space-time. Here, we accumulate 
the hourly precipitation into daily precipitation to help offset the errors associated with the timing 
of the event. Figure S15 shows the monthly averaged daily precipitation from UI-WRF-Chem 1055 
model sensitivity simulations (1)-(6) with surface observations. In general, all the sensitivity runs 
overestimate the precipitation. Turning on the cumulus scheme in domain 2 when using the 
traditional G3D scheme results in larger bias compared to the results of turning the G3D scheme 
off. The work of Zhang et al. (2021) also found that the WRF model had better prediction of 
precipitation in the central Great Plains in the U.S. when turning off the G3D cumulus scheme 1060 
with the spatial resolution of 4 km, compared to the sensitivity run of turning on the G3D cumulus 
scheme. Turning off the cumulus scheme in domain 2 when using the G3D scheme is comparable 
to the results of the simulation using the scale-aware GF cumulus scheme.   
 
We then focus on the impacts on surface PM2.5 concentration. Figure S16 shows the spatial map 1065 
of surface PM2.5 concentration for June 2022 and Fig 13 compares model simulated daily PM2.5 
concentration with ground observation. Both sensitivity simulations (2) and (4) with the G3D 
scheme on for the inner domain (D2) simulate higher precipitation than other simulations, which 
leads to lower surface PM2.5 concentration (Fig S16(b) and (e)). Overall, the surface PM2.5 
concentration from sensitivity simulations (2) and (4) have the lowest correlation (0.34 and 0.49) 1070 
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compared to other simulation (0.52–0.61) (Fig 13). They also have higher MB (–5.1 µg m-3 and –
5.9 µg m-3) compared with other simulations (–4.7 to –3.2 µg m-3) (Fig 13). Sensitivity simulations 
over CHN-Beijing also show similar results related to surface PM2.5 concentration when 
contrasting the sensitivity simulation with or without the G3D cumulus on for the inner domain 
(not shown here). This validates our choice of turning the cumulus scheme off for the inner domain 1075 
(D2) when using the traditional cumulus scheme such as G3D. Surface PM2.5 concentration from 
the sensitivity simulations, which turn off the G3D cumulus scheme ((1) and (4)) is comparable to 
or even better than the results from the sensitivity simulations (3) and (6) which turn on the scale-
aware cumulus scheme GF.  
 1080 

 
Figure 13. Scatter plot of daily surface PM2.5 concentration between model (y axis) and ground observation (x axis) over the inner 
domain (D2) of USA-Atlanta for June 2022. (a)-(f) are the UI-WRF-Chem sensitivity simulations with different setups of 
microphysics and cumulus schemes. (a)–(c) all have the Lin microphysics scheme on for domain 1. (a) has the Lin microphysics 
scheme on for domain 2 and no cumulus scheme is used for domain 2. (b) is the same as (a) except that the G3D cumulus scheme 1085 
is turned on for domain 2. (c) is same as (b) except that the GF cumulus scheme is used for domain 2. (d)–(f) are the same as (a)–
(c) except that the Morrison microphysics scheme is used for both domain 1 and domain 2. Also shown on the scatter plot is the 
correlation coefficient (R), the root-mean-square error (RMSE), the mean ± standard deviation for observed (x) and model-
simulated surface PM2.5 (y), the number of collocated data points (N), the best fit linear regression (the solid black line) and the 
1:1 line (the dashed black line).  1090 
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There are some uncertainties in this case study. First, our evaluation is limited in time. A longer 
dataset would be more helpful to reveal model performances in other seasons too (Jeworrek et al., 
2021). Also, we have only considered a limited number of model configurations. Previous work 
have shown that the prediction of precipitation is also sensitive to other schemes in the model such 1095 
as the PBL scheme (Klein et al., 2015; Argüeso et al., 2011). Most previous work have focused on 
the impacts of microphysics and cumulus scheme on precipitation and less have focused on the 
coupling with the aerosol fields. The process of handling aerosol-cloud interactions would be 
another source of uncertainty here. Lastly, deficiencies in MERRA-2 boundary conditions could 
also introduce uncertainties or biases in the WRF-Chem simulation (Zhang et al., 2021).  1100 

5. Conclusion and discussion 

We have developed the Unified Inputs (of initial and boundary conditions) for WRF-Chem (UI-
WRF-Chem) modeling framework, based on the standard WRF-Chem model to support the MAIA 
satellite mission, which aims to study how different types of PM air pollution affect human health. 
The UI-WRF-Chem outputs will be integrated together with satellite and ground observations data 1105 
to generate surface total PM and speciated PM maps. We have made the following major updates 
in the UI-WRF-Chem modeling framework: (1) using NASA GEOS data including GEOS FP and 
MERRA-2 data to provide both meteorological and chemical initial and boundary conditions to 
drive WRF-Chem simulations at a finer spatial resolution for both forecasting and reanalysis 
modes; (2) developing the WEPS stand-alone module to process both global and regional 1110 
anthropogenic emissions as well as fire emissions; (3) updating land surface properties (land cover 
type, LAI, GVF and albedo) with MODIS land products in a timely fashion; (4) using a global or 
regional land data assimilation system (GLDAS or NLDAS) to constrain soil properties (soil 
temperature and moisture etc.); and (5) developing a new soil NOx emission scheme - BDISNP.  
 1115 
In this work, we focus on four target areas to demonstrate the application of the UI-WRF-Chem 
modeling framework: CHN-Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta. Each target 
area is set up with 2 nested domains with a 12 km and 4 km spatial resolution for the outer domain 
(D1) and inner domain (D2), respectively. First, we conduct a suite of sensitivity simulations over 
each target area to select the optimal combination of physics schemes used in the model. We have 1120 
chosen to turn off the cumulus scheme for the inner domain (D2) since we are using the traditional 
G3D cumulus scheme, which is not a scale-aware scheme. We investigate the impacts of cumulus 
scheme and microphysics scheme on model performance over the USA-Atlanta target area for 
June 2022. Our case study shows that turning on the G3D cumulus scheme in the inner domain 
(D2) will produce higher precipitation than the sensitivity simulation with the G3D scheme off, 1125 
which in turn leads to lower surface PM2.5 concentration. Compared with surface observations of 
precipitation and PM2.5 concentration, the sensitivity simulation with the G3D scheme off shows 
better performance than keeping it on. Due to the problem with the scale-aware GF cumulus 
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scheme in the model (not coupled to the chemistry), we are not able to fully investigate the use of 
a scale-aware scheme on model performance in the current work. Future work will explore the use 1130 
of this scale-aware scheme with longer periods of simulation and in other target areas.  
  
Both CHN-Beijing and ITA-Rome target areas are affected by dust long-range transport. We select 
two dust intrusion events that impacted these two target areas. A dust storm originated from the 
Taklamakan and Gobi Deserts around 24 March 2018 and moved downwind to CHN-Beijing from 1135 
27 to 28 March 2018. For ITA-Rome, we focus on June 2023 where Saharan dust transported to 
the target area. For both target areas, we conduct UI-WRF-Chem sensitivity simulations with 
different chemical boundary conditions being considered using MERRA-2 data: no chemical 
species considered; including dust and other aerosols. Here, we also develop a method to constrain 
the dust concentration for each size bin in the MERRA-2 data using AERONET data. We compare 1140 
the dust PSD from MERRA-2 data with AERONET observations to better distribute the dust 
concentration in different size bins in the MERRA-2 chemical boundary conditions, based on long-
term datasets. Our results show that including the dust and other aerosols in the boundary improve 
model simulated surface PM concentration and AOD during dust intrusion events for both target 
areas, compared to the model run without using MERRA-2 chemical boundary conditions. Using 1145 
the constrained dust concentration in the MERRA-2 data further improve model performance. This 
method helps reduce the computational cost when long-range transport or regional transport affects 
a target area. Otherwise, we would need to add a third nested domain with expanded domain size 
to cover the pollution sources such as the dust source region.  
 1150 
Updating land surface properties (land cover type, LAI, GVF and surface albedo) with MODIS 
land data in a timely fashion improves model simulated TSK compared with MODIS LST, which 
is demonstrated over the CHN-Beijing target area for July 2018. This could help better capture the 
UHI phenomenon, which leads to better simulation of processes that are important for surface PM 
simulation. For other PTAs who have experienced rapid urbanization, updating land cover type 1155 
and other land surface properties with timely MODIS land data can be important. We also 
recognize that we have not investigated the use of an urban canopy model to simulate the UHI 
effect in the UI-WRF-Chem framework. The newly updated BDISNP soil NOx emission scheme 
improves the simulation of NO2 which subsequently affects surface nitrate. Evaluated against 
TROPOMI NO2 VCD, the updated BDISNP soil NOx emission scheme increases NO2 VCD, 1160 
mainly over croplands in CHN-Beijing target area than the simulation using the default MEGAN 
soil NOx emission scheme, which is mainly due to the application of fertilizer use. Since the ground 
observations of surface NO2, O3, and PM2.5 concentration are mostly located in the urban areas, 
we acknowledge that our current work is limited, and efforts will need to further evaluate the 
impacts of this updated BDISNP scheme in the rural areas. Nevertheless, the launch of the GEMS 1165 
and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) (Zoogman et al., 2017) 
satellites will provide good opportunities to further refine the BDISNP scheme. The synergy 
between MAIA and GEMS/TEMPO will also provide opportunities to evaluate both gas and 
aerosol composition simultaneously.  
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 1170 
We also perform a case study over the USA-LosAngeles target area, where we tune dust emissions 
inside the target area. Southwestern U.S., covering part of the USA-LosAngeles target area are 
desert areas, which experience dust outbreaks. If we use the default dust emission scheme, the 
model simulated surface PM and AOD overestimate ground observations. We conduct sensitivity 
tests to fine tune the parameters in the dust emission scheme as commonly done in the literature to 1175 
find the optimal parameter. As we have been conducting model performance evaluation, we can 
do some fine-tuning over each target area to investigate the problem specific to that target area. 
The case study over USA-LosAngeles gives an example of the fine-tuning work we are doing. As 
part of the MAIA satellite mission, UI-WRF-Chem model outputs will also be further evaluated 
by the surface measurements of aerosol composition data that will be collected in various PTAs 1180 
through the Surface Particulate Matter Network (SPARTAN) (Snider et al., 2015) and other 
existing networks in the target areas. Selection of physics schemes for other PTAs and other model 
evaluation results will be documented in a technical guide to complement this paper.  

Code and data availability 

The codes used in this work are available at:  https://zenodo.org/records/15074108 (Zhang, 2025a). 1185 
WRF-Chem is an open-access model, which is available at: https://github.com/wrf-
model/WRF/releases. The WRF-Chem preprocessor tools including mozbc, bio_emiss, 
anthro_emiss and  EPA_ANTHRO_EMIS are available at: https://www2.acom.ucar.edu/wrf-
chem/wrf-chem-tools-community. Input files for bio_emiss and U.S. EPA NEI 2017 data can also 
be acquired from this website. EDGAR-HTAP global anthropogenic emission data are available 1190 
at: https://edgar.jrc.ec.europa.eu/dataset_htap_v3. MEIC anthropogenic emission data for China 
are available at: http://meicmodel.org.cn/?page_id=1772&lang=en. MODIS and VIIRS data are 
available at: https://ladsweb.modaps.eosdis.nasa.gov/; CALIOP data are downloaded from 
https://asdc.larc.nasa.gov/project/CALIPSO; MERRA-2, GLDAS, NLDAS and TROPOIMI and 
GPM data can be acquired from https://disc.gsfc.nasa.gov/. Both ground observations of 1195 
meteorology and PM data for Beijing are available at: https://quotsoft.net/air/. Ground 
observations of meteorology and PM data for Los Angeles as well as PM data for Atlanta are from 
https://aqs.epa.gov/aqsweb/airdata/download_files.html. Ground observations of meteorology 
data for Rome and Atlanta are from https://www.ncei.noaa.gov/pub/data/noaa/isd-lite/. Ground 
observations of PM data for Rome are available from https://search.earthdata.nasa.gov/search (use 1200 
key words MAIA PM data). AERONET data can be downloaded at: https://aeronet.gsfc.nasa.gov/. 
Other datasets that are used and created in this work are available at: 
https://zenodo.org/records/15239059 (Zhang, 2025b).  
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