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20  Abstract.

The Multi-Angle Imager for Aerosols (MAIA) satellite mission, to be jointly implemented by
NASA and the Italian Space Agency with an expected 2026 launch, aims to study how different
types of particulate matter (PM) pollution affect human health. The investigation will primarily
focus on a discrete set of globally distributed Primary Target Areas (PTAs) containing major
25  metropolitan cities, and will integrate satellite observations, ground observations, and chemical
transport model (CTM) outputs to generate maps of near-surface total and speciated PM within
the PTAs. In addition, the MAIA investigation will provide satellite measurements of aerosols
over a set of Secondary Target Areas (STAs), which are useful for studying air quality more
broadly. For the CTM, we have developed a Unified Inputs (of initial and boundary conditions)
30 for WRF-Chem (UI-WRF-Chem) modeling framework to support the MAIA satellite mission.
These developments include: (1) application of NASA GEOS FP and MERRA-2 data to provide
both meteorological and chemical initial and boundary conditions for performing WRF-Chem
simulations of air quality at a fine spatial resolution for both forecast and reanalysis modes; (2) a
stand-alone emission preprocessor that ingests both global and regional anthropogenic emission
35 inventories as well as fire emissions; (3) application of MODIS land data to improve land surface
properties such as land cover type; (4) application of GLDAS and NLDAS data to constrain surface



https://doi.org/10.5194/egusphere-2025-1360
Preprint. Discussion started: 5 May 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

soil properties such as soil moisture; (5) development of a new soil NOx emission scheme — the
Berkeley Dalhousie lowa Soil NO Parameterization (BDISNP).

40  Here, we illustrate the model improvements because of these developments over four target areas:
Beijing in China, CHN-Beijing (STA); Rome in Italy, ITA-Rome (PTA); Los Angeles in the U.S.,
USA-Angeles (PTA) and Atlanta in the U.S., USA-Atlanta (PTA). UI-WRF-Chem is configured
as 2 nested domains using an outer domain (D1) and inner domain (D2) with a 12 km and 4 km
spatial resolution, respectively. For each target area, we first run a suite of sensitivity simulations

45  to test the model sensitivity to different options of physics schemes and then select the optimal
combination of physics schemes based on evaluation of model simulated meteorology with ground
observations. For the inner domain (D2), we have chosen to turn off the traditional Grell 3D
ensemble (G3D) cumulus scheme. We conduct a case study over USA-Atlanta for June 2022 to
demonstrate the impacts of cumulus scheme on precipitation and subsequent surface PMa:s

50  concentration. Our results show that keeping the G3D cumulus scheme on results in higher
precipitation and lower PMa s than the simulation with the G3D cumulus scheme off. Compared
with surface observations of precipitation and PM» 5 concentration, the sensitivity simulation with
the G3D scheme off shows better performance than keeping it on. We focus on two dust intrusion
events over CHN-Beijing and ITA-Rome, which occurred in March 2018 and June 2023,

55  respectively. We carry out a suite of sensitivity simulations using UI-WRF-Chem by excluding
chemical boundary conditions or including MERRA-2 chemical boundary conditions. Our results
show that using MERRA-2 data to provide chemical boundary conditions can help improve model
simulation of surface PM concentration and AOD. Some of the target areas have also experienced
significant changes in land cover and land use over the past decade. Our case study over CHN-

60  Beijing in July 2018 investigates the impacts of improved land surface properties with timely
MODIS land data on capturing the urban heat island phenomenon. Model-simulated surface skin
temperature shows better agreement with MODIS observed land surface temperature. The updated
soil NOx emission scheme in July 2018 also leads to higher NO; vertical column density (VCD)
in rural areas over CHN-Beijing target area, which matches better with TROPOMI observed NO»

65  VCD. This in turn affects the simulation of surface nitrate concentration. Lastly, we conduct a case
study over USA-LosAngeles to tune the dust emissions. This gives an example to show the fine-
tuning work we do over each target area to investigate the problem specific to that target area as
we continue evaluating and improving model performance.

1. Introduction

70  Ambient particulate matter (PM) pollution has been ranked as one of top environmental risk factors
for global deaths (Forouzanfar et al., 2016). The integrated use of satellite and chemical transport
model (CTM) outputs have shed light on the impacts of PMa2.5 (PM with aerodynamic diameter
less than 2.5um) on public health in the past decade (Cohen et al., 2017; Wang et al., 2021a).
Satellite retrieved aerosol data products such as aerosol optical depth (AOD) have been widely
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75  used to estimate ground-level PM2 s concentration over the past two decades (e.g. (Shin et al.,
2020; Van Donkelaar et al., 2006; Wang and Christopher, 2003)) due to its large spatial coverage.
Because of the uncertainty in remote sensing technique and the complex AOD-PMa s relationship
(Wang and Christopher, 2003), these satellite derived ground-level PM2 s have been combined
with ground observations of PMzs and/or CTM simulated PM>s to form a hybrid method of

80  providing a new data source for epidemiological health studies (e.g. (Van Donkelaar et al., 2010;
Holloway et al., 2021; Diao et al., 2019)). This hybrid method has also been used for estimating
PM:.s component concentration and its application in health-related studies (Philip et al., 2014; Li
etal., 2021; Hu et al., 2019; Wei et al., 2023).

85  The Multi-Angle Imager for Aerosols (MAIA) satellite mission to be jointly implemented by the
National Aeronautics and Space Administration (NASA) (Diner et al., 2018) and the Italian Space
Agency (ASI) has a key objective to map the PM composition and study the impacts of different
types of PM on human health (Liu and Diner, 2017). The MAIA instrument builds upon the work
of the Multi-angle Imaging SpectroRadiometer (MISR) instrument, onboard NASA’s Terra

90  spacecraft, which has been retrieving aerosol properties including aerosol type since February
2000 (Diner et al., 1998; Kahn et al., 2005). MISR has also been one of the commonly used satellite
instruments for mapping global PM concentration for studying air quality and public health (Liu
et al., 2009; Holloway et al., 2021; Meng et al., 2018). The MAIA investigation will focus on a set
of primary target areas (PTAs) globally (https://maia.jpl.nasa.gov/mission/#target_areas), which

95 are large metropolitan areas. For each PTA, it will integrate satellite observations, CTM outputs
and ground observations to generate maps of surface total and speciated PM including sulfate,
nitrate, dust, Organic Carbon (OC) and Black Carbon (BC) or Elemental Carbon (EC). In addition,
the MAIA investigation will provide satellite measurements of aerosols over a set of Secondary
Target Areas (STAs), which are useful for studying air quality more broadly.

100
Our work here introduces the development of the Unified Inputs (of initial and boundary
conditions) for WRF-Chem (UI-WRF-Chem) as the CTM for supporting the MAIA satellite
mission, based on the standard WRF-Chem model (Fast et al., 2006; Grell et al., 2005). The major
updates we have made include the following: (1) application of the NASA Goddard Earth
105  Observing System (GEOS) products including both GEOS Forward Processing (FP) and Modern-
Era Retrospective Analysis for Research and Application, version 2 (MERRA-2) data to provide
both meteorological and chemical initial and boundary conditions for performing WRF-Chem
simulation with a finer spatial resolution in forecasting and reanalysis modes; (2) development of
a stand-alone WRF-Chem Emission Preprocessing System (WEPS) that ingests both global and
110 regional anthropogenic emission inventories as well as fire emissions; (3) application of Moderate
Resolution Imaging Spectroradiometer (MODIS) land data to update land surface properties such
as land cover type in WRF-Chem; (4) application of the Global Land Data Assimilation System
(GLDAS) (Rodell et al., 2004) or the North American Land Data Assimilation System (NLDAS)
(Mitchell et al., 2004) data to constrain soil properties such as soil moisture; and (5) development
115  of a new soil NOx (NO + NO2) emission scheme - the Berkeley Dalhousie lowa Soil NO
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Parameterization (BDISNP), based on the Berkeley Dalhousie Soil NO Parameterization
(BDSNP) (Hudman et al., 2012).

The new developments of UI-WRF-Chem are justified with the following consideration. First, the
120 NASA GEOS system assimilates satellite observations of aerosol products (Randles et al., 2017).
Using these assimilated data to provide chemical initial and boundary conditions for WRF-Chem
simulations over MAIA target areas would be computationally efficient for capturing long-range
or regional transport without enlarging the model domain to include the emission sources. A
number of studies have demonstrated the influence of chemical boundary conditions on regional
125  air pollution in the domain of interests when running WRF-Chem (e.g. (Mo et al., 2021; Ukhov et
al., 2020; Roozitalab et al., 2021; Wang et al., 2004)). Second, anthropogenic and fire emissions
play a crucial role in simulating aerosols in the CTM. Building our own emission preprocessor
will allow us the opportunities to optimize the existing emission inventories and add new ones,
especially those from top-down estimates (Wang et al., 2020b; Wang et al., 2020c). Third, some
130 of the default land surface properties used in WRF-Chem such as land cover type have been out
of date. Using MODIS land data to update land surface properties in a timely manner would help
improve mesoscale model performances (Li et al., 2014; Li et al., 2017a; Aegerter et al., 2017;
Wang et al., 2023). Fourth, soil properties such as soil moisture fields are of the high importance
to both weather forecast, biogenic emission estimates and dust storm simulation (Han et al., 2021),
135  and ultimately, air quality prediction (Thomas et al., 2019; Jenkins and Diokhane, 2017; De
Rosnay et al., 2014). The GLDAS and NLDAS are two data assimilation systems that can offer
optimized initial soil conditions with a high spatial and temporal resolution for numerical weather
forecasting (Dillon et al., 2016; Xia et al., 2014). Better estimates of soil moisture will also lead to
improved simulation of soil NOx emissions, which serve as an important part of the total global
140  NOx budget (Jaeglé et al., 2005) and also play a critical role in the formation of ozone (O3) and
nitrate aerosols (Sha et al., 2021; Lin et al., 2021). Lastly, the default soil NOx emissions in WRF-
Chem could be underestimated by a factor of 10 in some places (Oikawa et al., 2015).

In this paper, we present the developments of the UI-WRF-Chem modeling framework and then
145  illustrate the model improvement as the results of some of these developments as well as fine
tuning over a specific target area. In this work, we focus on four target areas: Three of the target
areas are PTAs: Rome in Italy (ITA-Rome), Los Angeles in the U.S. (USA-LosAngeles) and
Atlanta in the U.S. (USA-Atlanta); one is a STA: Beijing in China (CHN-Beijing). Beijing was a
PTA and has recently been changed to a STA. However, the case study over Beijing can still serve
150  as a good example to demonstrate the model capability. These four target areas together have a
good representation of the range of PM pollution levels across the target areas (Los Angeles and
Atlanta on the lower end, Rome in the middle and Beijing on the higher end). Some of our previous
work have focused on other PTAs using the UI-WRF-Chem modeling framework. Li et al. (2024)
developed an inverse modeling method to improve the diurnal profile of anthropogenic emissions
155 in Addis Ababa, Ethiopia PTA, using surface observations from both U.S. Embassy sites and
PurpleAir sensors. Chutia et al. (2024) investigated the impacts of aerosol-radiation interaction on
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air quality in Delhi, India PTA. Overall, current work together with previous work can provide a
good picture of the model performance for different applications. This paper is organized as
follows: Section 2 focuses on the description of the UI-WRF-Chem model development; Section

160 3 provides the model configuration used in the target areas; Results and Conclusion are presented
in Section 4 and Section 5, respectively.

2. UI-WRF-Chem development

UI-WRF-Chem uses the NASA GEOS model data to provide self-consistent and unified
meteorological and chemical initial and boundary conditions for driving WRF-Chem simulations.

165  UI-WRF-Chem can be run in both forecasting and reanalysis modes, which are driven by GEOS
FP and MERRA-2 meteorology and aerosol fields, respectively. Both modes are needed because
the former is used in MAIA’s near real time (NRT) data production, while the latter is used in
MAIA’s reanalysis postprocessing data production.

2.1 Unified Inputs (of initial and boundary conditions) for meteorology and chemistry

170  Both GEOS FP and MERRA-2 data are generated within the GEOS atmospheric and data
assimilation system (Rienecker et al., 2008), in which meteorological and aerosol observations are
jointly assimilated. GEOS FP uses the most recent GEOS system to produce the real-time
forecasting data while MERRA-2 uses a frozen version of the GEOS system to conduct the long-
term atmospheric reanalysis since 1980. The GEOS native model is on a cubed sphere grid with

175 72 hybrid-eta layers from surface to 0.01 hPa. Products are saved on a 0.5° x 0.625° latitude by
longitude grid for MERRA-2 and 0.25° x 0.3125° latitude by longitude for GEOS FP (Gelaro et
al., 2017).

MERRA-2 assimilates multiple streams of aerosol products including bias corrected AOD
180  calculated from observed radiances measured by the Advanced Very High Resolution Radiometer
(AVHRR) over ocean prior to 2002 and by MODIS on Terra and Aqua satellites over dark surfaces
and ocean since 2000 and 2002, respectively; also assimilated are the MISR AOD over bright land
surface and AOD measurements from Aerosol Robotic Network (AERONET) before 2014
(Randles et al., 2017). In the NRT mode, GEOS FP only assimilates AOD derived from MODIS
185  Terraand Aqua. The aerosol module used in the GEOS system is the Goddard Chemistry, Aerosol,
Radiation, and Transport (GOCART) model (Colarco et al., 2010; Chin et al., 2002). The
GOCART module simulates major aerosol species including sulfate, BC, OC, dust (five bins with
lower and upper radius range as: 0.1-1, 1-1.8, 1.8-3, 3-6, 610 pm), and sea salt (five bins with
lower and upper radius range as: 0.03-0.1, 0.1-0.5, 0.5-1.5, 1.5-5.0, 5.0-10 um). These aerosol
190  products are available in both GEOS FP and MERRA-2 products. Since 2017, nitrate aerosols
have been added into the GEOS system and GEOS FP products thus include nitrate aerosols.
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Our work differs from the past work that uses the GEOS FP or MERRA-2 data to drive WRF-
Chem in several aspects. For example, Peters-Lidard et al. (2015) presented the NASA Unified-
195  Weather Research and Forecasting model (NU-WRF) that can be driven by GEOS FP and
MERRA-2, but its atmospheric chemistry process is simplified with the GOCART module
(without prognostic simulation of aerosol size distribution and nitrate for example) and is designed
to be an observation driven integrated modeling system that represents aerosol, cloud,
precipitation, and land processes at satellite-resolved scales (~1-25 km). Hence, its real-time
200  application for atmospheric chemistry and aerosol composition forecast is rather limited.
Nevertheless, the NU-WREF’s concept and framework of using GEOS FP and MERRA-2 to drive
WREF-Chem are adopted by UI-WRF-Chem development here to provide meteorological initial
and boundary conditions for WRF-Chem, using meteorological variables other than soil properties.

205  Adopting of GEOS FP or MERRA-2 soil properties into WRF-Chem needs special treatment. In
the GEOS system, the land surface model (LSM) is a catchment-based model (Koster et al., 2000),
which is fundamentally different from the LSMs available in WRF-Chem. The commonly used
LSMs in WRF-Chem include the Noah scheme (Chen et al., 1996; Chen and Dudhia, 2001), the
Rapid Update Cycle (RUC) (Smirnova et al., 2000), and the Community Land Model (CLM)

210  (Oleson et al., 2004), which are all column-based models with different soil layers. To resolve this
issue, Peters-Lidard et al. (2015) used the Land Information System (LIS) (Kumar et al., 2006) to
process GEOS outputs and provide initial conditions of soil properties such as soil temperature
and soil moisture for running WRF and NU-WRF (Kumar et al., 2008). Since land surface process
is slow and usually requires years of LIS simulation to stabilize the soil properties in the model,

215  we have here developed modules to utilize soil data products from two land data assimilation
systems, GLDAS (Rodell et al., 2004) and NLDAS (Mitchell et al., 2004), which use LIS to focus
on the analysis of soil properties in near real time. This way, we reduce the computational cost and
complexity of running LIS within the UI-WRF-Chem. The initial conditions of soil properties can
have an important impact on boundary layer processes for days to weeks (the so-called memory

220  effect). Hence, the special treatment of soil properties by using observation-constrained GLDAS
and NLDAS in UI-WRF-Chem is warranted.

Our use of GEOS FP and MERRA-2 as UI-WRF-Chem chemical boundary conditions also differs
from the common practice that is adopted by either Community Atmosphere Model with
225  Chemistry, CAM-Chem (Emmons et al., 2020) for reanalysis or the Whole Atmosphere
Community Climate Model (WACCM) (Gettelman et al., 2019) for NRT forecasts as WRF-
Chem’s chemical boundary conditions. Both CAM-Chem and WACCM don’t assimilate satellite-
based aerosol fields and therefore lack the observational constraints for the day-to-day change of
aerosols concentration for a domain of interest.
230
Finally, we have also developed a method to constrain the chemical boundary condition for the
allocation of dust concentration in the MERRA-2 data as a function of different dust size bins.
This method can be applied in areas where AERONET sites with long-term data are available. We
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compare the dust particle size distribution (PSD) from MERRA-2 data with AERONET

235  observations to better distribute the dust concentration into different size bins in the chemical
boundary conditions. Detailed description and application of this approach are described in Sect
4.1 and 4.2.

2.2 Updates of land surface properties and soil NOx emission scheme

We also develop capabilities within UI-WRF-Chem to update land surface properties in a timely

240  manner. In the current work, we have selected the Noah LSM as the land surface model. MODIS
land products are used to update the land surface properties including land cover type on the annual
basis, green vegetation fraction (GVF), leaf area index (LAI) and surface albedo on the monthly
basis in the Noah LSM. These variables are among the key surface properties in the land model
that regulate the exchanges of energy, water, and momentum (Molders, 2001). The major technical

245  development and its application to study the impacts of land use/cover changes on urban
temperature in Eastern China during 2003—-2019 were described in Wang et al. (2023). Below we
briefly describe the updates of each land surface property.

The WRF-Chem model provides different sources of data for land surface properties. For land

250  cover type, one is the U.S. Geological Survey (USGS) map with 24 land cover types, which is
derived from the monthly AVHRR Normalized Difference Vegetation Index (NDVI) observations
from April 1992 to March 1993. Another one is from the MODIS land cover data including 17
land cover types, based on the International Geosphere-Biosphere Program (IGBP) scheme (Friedl
et al., 2002) and three classes of tundra (Justice et al., 2002). Over the years, MODIS land cover

255  data used in the WRF-Chem community have been updated for year 2001, 2004 or climatology
data from 2001-2010 (Broxton et al., 2014). For GVF, the default one was derived based on the
AVHRR NDVI observations collected from 1985 to 1990. Another option is to use the MODIS
Fraction of Absorbed Photosynthetically Active Radiation (FPAR) (data are from the early 2000s)
to substitute for GVF. For LAI and surface albedo, one option is to calculate the values online

260  using the look-up table, based on each land cover type. Another option is to use the MODIS LAI
and albedo data directly (data provided are from the early 2000s).

Here, we have developed the capability to update all the four land surface properties in UI-WRF-
Chem via the WRF Preprocessing System (WPS) in a timely fashion. It provides self-consistence
265  among the key land surface properties used in the land model as they come from the same satellite
observations and offers a flexible way to apply the data for WRF-Chem simulations with different
spatial resolution. The land cover data are updated with the MODIS yearly land cover type product
(MCD12Q1) collection 6 with a spatial resolution of 500 m. The LSM scheme also allows the
alternative use of satellite datasets for updating LAI, GVF and surface albedo. We develop two
270  ways to update GVF in the model: (1) using the recent MODIS NDVI product (MOD13A3) to
derive GVF; (2) using the Fraction of Photosynthetically Active Radiation absorbed by vegetation
(FPAR) from MODIS MCD15A2H product to replace GVF. For LAIL we use the MODIS LAI
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product (MCD15A2H) to update it in the model. For surface albedo, we have the option to use two
MODIS data products to update it in the model: (1) using the MCD43A3 albedo products; (2)

275  using the MODIS combined Terra and Aqua Bidirectional Reflectance Distribution Function
(BRDF) and Albedo product (MCD43C3).

The new BDISNP soil NOx emission scheme is also integrated as part of the UI-WRF-Chem
framework. The detailed development of the scheme has been described in Sha et al. (2021) and
280  Wangetal. (2021c¢). Briefly, in the standard WRF-Chem model, soil NOx emissions are calculated
using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al.,
2006; Guenther et al., 2012), which is intended for estimating biogenic emissions of volatile
organic compounds (VOCs). In the MEGAN model, emission factors are based on four global
plant function types (broadleaf trees, needle-leaf trees, shrubs/bushes and herbs/crops/grasses).
285  Previous work by Oikawa et al. (2015) has suggested that soil NOx emissions calculated from the
MEGAN model using WRF-Chem can be a factor of 10 underestimated in the Imperial Valley,
California, compared with ground observations. The BDSNP soil NOx emission scheme, currently
implemented in the global 3-D GEOS-Chem model (Hudman et al., 2012), was added into the Ul-
WRF-Chem, as the BDISNP, with several of our own updates.
290
As in BDSNP, the BDISNP includes a more physical representation of the soil NOx emission
process compared with the MEGAN model. The BDISNP considers available nitrogen (N) in soils
from biome specific emission factors, online dry and wet deposition of N, and fertilizer and manure
N. It also includes the pulsing of soil NOx emission following soil wetting by rain and the impacts
295  of soil temperature and moisture. Compared to BDSNP, we have made four major updates in the
BDISNP: (1) updating the land cover type data with the MODIS land cover type data to better
reflect the land cover change; (2) using the GLDAS soil temperature data for calculating the soil
NOx emissions rather than using the 2 m air temperature as a proxy for soil temperature; (3) using
the modelled GVF data to determine the distribution of arid and non-arid regions to replace the
300 static climate data used in the BDSNP scheme. With these three updates, Sha et al. (2021) has
shown that the WRF-Chem simulation with the BDISNP scheme leads to a better agreement with
TROPOMI retrieved NO> columns over California for July 2018, compared with using the default
MEGAN scheme. The increased soil NOx emissions with the BDISNP scheme result in a 34.7%
increase in monthly mean NO: columns and 176.5% increase in surface NO; concentration, which
305  causes an additional 23.0% increase in surface O3 concentration in California. The work of Zhu et
al. (2023) used derived soil NOx flux measurements from a field Campaign over the San Joaquin
Valley in California during June 2021 to evaluate three soil NOy emission schemes: the MEGAN
in the California Air Resource Board (CARB) emission inventory, the Biogenic Emission
Inventory System (BEIS) and the BDISNP developed here. It was found that both MEGAN and
310  BEIS inventories were lower than the observation by more than one order of magnitude, and the
BDISNP was lower by a factor of 2.2. Even though being underestimated, the BDISNP and the
observation showed a similar spatial pattern and temperature dependence.
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The fourth update revises the default soil temperature response function in the BDISNP scheme,

315  as described in Wang et al. (2021c). In the default scheme, the soil temperature response follows
an exponential function for soil temperature between 0 °C and 30 °C and stays the same as 30 °C
after the soil temperature is above 30 °C. In the work of Oikawa et al. (2015), which found high
soil NOx emissions in high-temperature agricultural soils, an observation-based soil temperature
response function was developed. This function is used here to update the default soil temperature

320 response function. Specifically, in the range of 20 °C and 40 °C, it is a cubic function of soil
temperature. When soil temperature is greater than 40 °C, the value of the response function is set
the same as the value of soil temperature at 40 °C. In addition, final soil NOy emissions are reduced
by 50% following the work of Silvern et al. (2019) and Vinken et al. (2014). With this update,
Wang et al. (2021c) showed that the GEOS-Chem simulated tropospheric NO; vertical column

325  densities (VCDs) agrees better with Ozone Monitoring Instrument (OMI) observed NO2 VCDs for
2005-2019 summer in the U.S., compared with the GEOS-Chem simulation that uses the default
soil temperature function. This model improvement further helps explain the slowdown of
tropospheric NO2 VCD reduction during 2009-2019 observed by OMI in the U.S.

2.3 WRF-Chem Emission Preprocessing System (WEPS)

330  The WEPS Fortran utility is developed to map both global and regional anthropogenic emissions
as well as fire emissions for running UI-WRF-Chem simulations. WEPS builds upon a few tools
used in the WRF-Chem community (https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-
community). For example, the anthro-emiss utility creates WRF-Chem ready emission files from
global anthropogenic emission inventory datasets. There is also another Fortran program

335  (emission_v3.F) to process the U.S. EPA National Emissions Inventory (NEI) 2005 and 2011.
Recently, a new tool EPA_ ANTHRO_ EMIS has been developed to create WRF-Chem ready
anthropogenic emission files from Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling
System netcdf outputs for NEI 2014 and 2017. We have adopted some of the functionalities in
these tools into the WEPS.

340
Currently in WEPS, we can ingest the following global anthropogenic emission inventories: (1)
HTAP_v2.2 (Janssens-Maenhout et al., 2015) and HTAP_v3 (Crippa et al., 2023), created under
the umbrella of the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), which is
the compilation of different emission inventories over specific regions (North America, Europe,

345  Asia including Japan and South Korea) with the independent Emissions Database for Global
Atmospheric Research (EDGAR) inventory filling in for the rest of the world; (2) EDGARvS5.0
for year 2015 (Crippa et al., 2020). The HTAP_v3 includes regional emission inventories from
U.S. EPA NEI, CAMS-REGvS5.1 for Europe, the Regional Emission inventory in Asia
(REASV3.2.1), the Clean Air Policy Support System (CAPSS-KU) inventory over South Korea,

350 the JAPAN emission inventory (PM2.5EI and J-STREAM) in Japan and EDGARV6.1
(https://data.jrc.ec.europa.cu/dataset/df521e05-6a3b-461c-965a-b703fb62313¢) for the rest of the
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world. It consists of 0.1 ° x 0.1 ° grid maps of species: CO, SO2, NOy, non-methane volatile organic
compound (NMVOC), NH3, PMjo, PM25, BC and OC for year 2000-2018 (Crippa et al., 2023).
Four sectors are included for these species: energy (mainly power industry), industry

355 (manufacturing, mining, metal, cement, etc.), transport (ground transport such as road) and
residential (heating/cooling of buildings etc.). For NH3, an additional sector — agriculture is also
included. The datasets have a monthly temporal resolution, and we have interpolated them to daily
data. In addition, we have added sector-based diurnal profiles following the work of Du et al.
(2020). For UI-WRF-Chem simulation over the U.S. domain or China domain, we have added the

360 capability to use U.S. EPA NEI 2017 or the Multi-resolution Emission Inventory model for
Climate and air pollution research (MEIC) (Zheng et al., 2018; Li et al., 2017b) emission inventory
to replace the global emission inventory HTAP_v3, respectively.

For fire emissions, the WEPS can process several emission inventories as described in Zhang et
365 al.(2014). They include: Fire Locating and Modeling of Burning Emissions inventory (FLAMBE)
(Reid et al., 2009); Fire INventory from NCAR version 1.0 (FINN v1.01) (Wiedinmyer et al.,
2011); Global Fire Emission Database version 3.1 (GFED v3.1) (Van Der Werf et al., 2010); Fire
Energetics and Emissions Research version 1.0 using fire radiative power (FRP) measurements
from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (FEER-SEVIRI
370  v1.0) (Roberts and Wooster, 2008; Ichoku and Ellison, 2014); Global Fire Assimilation System
(GFAS v1.0) (Kaiser et al., 2012); NESDIS Global Biomass Burning Emissions Product (GBBEP-
Geo) (Zhang et al., 2012); Quick Fire Emissions Dataset version 2.4 (QFED v2.4) (Darmenov and
Da Silva, 2015). Our recent work involves developing a Visible Infrared Imaging Radiometer Suite
(VIIRS) based fire emission inventory, Flre Light Detection Algorithm (FILDA-2) (Zhou et al.,
375  2023). Our past work has mainly focused on OC and BC emissions from FLAMBE emission
inventory (e.g. (Ge et al., 2014; Zhang et al., 2022; Zhang et al., 2020)). We have now included
gas species such as CO from FLAMBE emission inventory. The injection height by default is set
to range from 500 m to 1200 m, based on our previous work (e.g. (Yang et al., 2013; Wang et al.,
2013; Ge et al., 2017)) and users have the option to specify the injection height on their own.

380 2.4 WRF-Chem chemistry description and update

The MAIA investigation not only focuses on the total PM2 s and PM 1o mass but the speciated PMa s
including sulfate, nitrate, BC or EC, OC and dust. We have therefore selected the Regional Acid
Deposition Model, Version 2 (RADM?2) for gas-phase chemistry (Stockwell et al., 1990) and the
Modal Aerosol Dynamics model for Europe (MADE) (Ackermann et al., 1998) and the Secondary
385  ORGanic Aerosol Model (SORGAM) (Schell et al., 2001) as the aerosol module for MAIA model
simulations, using WRF-Chem Version v3.8.1. The RADM2-MADE/SORGAM chemistry
mechanism in WRF-Chem simulates the above-mentioned aerosol species and has been widely
used to study air quality (e.g. (Georgiou et al., 2018; Zhang et al., 2020; Tuccella et al., 2012)).
The MADE/SORGAM acrosol module also includes ammonium, sea salt and water. The aerosol

10
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390  size distribution is represented by the modal approach (Binkowski and Shankar, 1995), which uses
three modes (the Aitken, accumulation and coarse mode). A log-normal size distribution and
internal mixing of aerosol species are assumed in each mode.

In the MADE/SORGAM aerosol scheme, dust is not explicitly simulated but rather blended into
395  other species. For smaller size bins of dust, they are represented by the unspecified PM; s chemical
species, which have Aitken and accumulation modes. For larger size bins of dust, they are counted
as the “soila”, which are used for coarse soil-derived aerosol species. To output the dust proportion
of the surface PMa2s mass concentration, we add dust species in five size bins (same as the
GOCART dust bins in MERRA-2) into the MADE/SORGAM aerosol scheme. This way, when
400  using MERRA-2 or GEOS FP to provide chemical initial and boundary conditions, the dust species
from the boundary file can be consistent with the dust species in the aerosol scheme. WRF-Chem
currently provides three dust emission schemes: the original GOCART dust emission scheme
(Ginoux et al., 2001), GOCART dust emission with the Air Force Weather Agency (AFWA)
modifications (Legrand et al., 2019), and the University of Cologne (UOC) scheme (Shao et al.,
405  2011). Both GOCART and GOCART-AFWA emission schemes release dust in five size bins with
lower and upper radius range of 0.1-1, 1-1.8, 1.8-3, 3-6, 610 um, same as the dust size bin used
in the MERRA-2 system. The UOC dust emission scheme considers dust in four size bins with
lower and upper radius range of 0—1.25, 1.25-2.5, 2.5-5, and 5-10 um. Here, we have selected the
use of GOCART-AFWA emission scheme in the UI-WRF-Chem framework, which matches the
410  dust size bins in the MERRA-2 and GEOS FP aerosol scheme.

Subsequently, a new chemistry scheme (MADE/SORGAM-DustSS) is created in UI-WRF-Chem
to include the dust in five size bins and sea salt aerosols as additional chemical tracers while all
other gas and aerosol species are the same as in the MADE/SORGAM scheme. The standard WRF-
415  Chem model currently supports the GOCART sea salt emission scheme, which releases sea salt
aerosol species in four bins. The lower and upper radius range of sea salt aerosols species are: 0.1—
0.5,0.5-1.5, 1.5-5.0, 5.0-10 um. We have then added sea salt aerosols in these four bins into the
MADE/SORGAM-DustSS scheme in the UI-WRF-Chem framework. The GOCART sea salt
aerosols in MERRA-2 data have five bins with lower and upper radius range as: 0.03-0.1, 0.1—
420  0.5,0.5-1.5, 1.5-5.0, 5.0-10 pm. This way, the GOCART sea salt aerosols in the aerosol scheme
would also match the aerosols in the chemical boundary file provided by MERRA-2 data. In the
newly added scheme of MADE/SORGARM-DustSS, we have followed the simple GOCART
aerosol scheme in the standard WRF-Chem model to add different transport processes for dust and
sea salt aerosol species such as dry deposition. We have also added a simple wet scavenging
425  scheme for dust and sea seal aerosols, which is described more in Sect 4.2.

Aerosol optical properties such as extinction and single scattering albedo are calculated based on
a sectional approach (Barnard et al., 2010) with 8 bins in WRF-Chem, regardless of the aerosol
scheme selected. For aerosol species in the MADE/SORGAM-DustSS aerosol scheme, the mass
430  and number concentrations of each aerosol species in the three modes will be matched to the 8

11
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bins. For dust and sea salt aerosol species, the dust and sea salt aerosols in their original 5 and 4
bins, are matched to the 8 bins. In each bin, the particles are assumed to be internally mixed and
spherical. The bulk properties such as refractive index for each bin is based on volume
approximation. Then, Mie theory is called to calculate the optical properties such as the absorption

435  efficiency and asymmetry parameter for each bin. The optical properties are computed and
outputted at four wavelengths (300, 400, 600 and 1000 nm). In addition, the work of Ukhov et al.
(2021) has found a few inconsistencies in WRF-Chem related to dust emissions coupled with the
GOCART aerosol module, which also impacts other aerosols schemes such as the
MADE/SORGAM module. These inconsistencies were found in the calculation of surface PMas

440  and PMjy concentration, calculation of aerosol optical properties and estimation of gravitational
settling. We have incorporated the corrections of these inconsistencies made by Ukhov et al.
(2021) in our UI-WRF-Chem framework.

2.5 Postprocessing and evaluation code, and repository management

Python modules are developed in house to postprocess UI-WRF-Chem hourly outputs as part of

445  the UI-WRF-Chem framework. They include diagnostics of some commonly used variables which
are not directly outputted such as relative humanity (RH) and the capability to extract and compile
hourly model output into daily output to facilitate file management. We have also created python
modules to evaluate UI-WRF-Chem model performance against ground observations and satellite
data, e.g., comparing model simulated column concentration of trace gases NO, with satellite

450  observed column concentration of NO». In addition, bash scripts are developed to automatically
run UI-WRF-Chem framework for both forecasting and reanalysis modes. It needs minimal work
to specify the paths of the codes and data on the servers before running the UI-WRF-Chem model.
The UI-WRF-Chem framework uses the GitHub, a git-based version control system to manage its
codes and developments. The repository stores the main codes of UI-WRF-Chem. When major

455  developments from our group and collaborators are made and validated, a new version will be
released. The WRF-Chem community also updates the WRF-Chem code and releases new
versions periodically, we will also check the major bug fixes and developments to incorporate
them in our codes accordingly.

3. Model configuration

460  All the UI-WRF-Chem model simulations for MAIA target areas are set up as 2 nested domains
(Fig 1) with a 4 km x 4 km horizontal spatial resolution for the inner domain (D2) focusing on the
MAIA target area and a 12 km x 12 km horizontal spatial resolution for a larger outer domain
(D1). The inner and outer domain have nominal dimension of ~360 km (east-west) x 480 km
(north-south) and ~1080 km (east-west) x 1000 km (north-south), respectively. Both domains have

465 48 vertical levels extending from the surface to 50 hPa. For the inner domain (D2), we have turned
off the cumulus scheme to let the model fully resolve the convective process while all other model
configurations are the same for both domains.

12
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Figure 1. Terrain height for (a) CHN-Beijing, (b) ITA-Rome, (c) USA-LosAngeles and (d) USA-Atlanta target areas of the 2 nested

470

domains: the outer domain (D1) and the inner domain (D2) shown as the white box. For (a), the orange filled triangles represent

the ground observation sites of PM, s and PM o mass concentration. Both open magenta squares and stars represent the AERONET
ground observation sites. The sites denoted by the stars are used to constrain the dust particle size distribution as described in Sect

4.1 while the sites denoted by squares are used to evaluate model simu
circles represent ground observations of PM;o mass concentration, and

475

lated AOD. (b) is same as (a), except that the orange open
orange filled triangles are the ground observations sites of

PM, s mass concentration. (c) is the same as (b) except that the orange box is defined as the dust-prone region, which is used to

tune dust emissions. For (d), the orange filled triangles represent the ground observation sites of PM, s mass concentration.

For each target area, we first run a suite of sensitivity simulations to test the model sensitivity to
different options of the physics schemes by evaluating model simulated meteorology variables

13
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with ground observations and then select the optimal combination of physics schemes based on
evaluation results. A description of the satellite and ground observation datasets used are provided
in Text S1 of the supporting information (SI). Several statistics are used to evaluate the model
performance against ground and satellite observations, including linear correlation coefficient (R),
root mean square error (RMSE), mean bias (MB), normalized mean bias (NMB), normalized
standard deviation (NSD) and normalized centered root mean square error (NCRMSE). NSD is
the ratio of the standard deviation of the model simulation to the standard deviation of the
observation. NCRMSE is like RMSE except that the impact of the bias is removed. Some of the
aforementioned statistics are summarized in a Taylor Diagram (Taylor, 2001), which includes R
(shown as the cosine of the polar angle), NSD (shown as the radius from the quadrant center), and
NCRMSE (shown as the radius from the expected point, which is located at the point where R and
NSD are unity).
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Figure 2. Taylor Diagrams for evaluating UI-WRF-Chem model simulated (a) meteorological variables (2, dewt2 or RH, wspd10
and pres) with ground observations for CHN-Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta target areas, and (b) surface
skin temperature (TSK) with MODIS observed land surface temperature (LST) for CHN-Beijing during July 2018. In (a),
evaluation results of daily meteorology variables are based on the model final configuration for each target area (Sect 3). Color bar
represents the ratio between model results and ground observations. In (b), USGS and updated refer to the UI-WRF-Chem
sensitivity simulations 2N_def (default USGS land cover type and subsequently derived GVF, LAI and albedo) and 2N_upd
(updated land cover type, GVF, LAI and albedo with 2018 MODIS land data) in Table 1, respectively. UI-WRF-Chem simulated
TSK averaged over the Terra and Aqua overpass time during daytime (TD and AD) and nighttime (TN and AN), respectively are
compared to the corresponding Terra and Aqua observations. Color bar represents the normalized mean bias (NMB) between model
results and satellite observations.
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There are many physics schemes that can be used in WRF-Chem. We select the commonly used
schemes for each target area based on literature review and our previous work (e.g. (Yang et al.,
505  2013; Sha et al., 2021; Zhang et al., 2022)). We also consider a few other factors as described
below. For the cumulus scheme, we consider the Grell 3D ensemble (G3D, (Grell and Dévényi,
2002)) scheme, which also accounts for cloud radiation feedback. With the current version of the
code, regardless of which cumulus scheme is used, the chemistry will be transported using the
G3D scheme while other scalars are transported with the selected cumulus scheme. Therefore, the
510  G3D scheme is used to ensure the consistency between chemistry and physics. For model spatial
grids greater than 10 km, they usually rely on the cumulus parameterization to determine the
subgrid convective processes. For model spatial grids smaller than 10 km, it is generally
considered as the convective gray zone, where the use of convective parameterization or explicit
resolving treatment of the convective process remains to be an ongoing question (Jeworrek et al.,
515  2019). Typically, for model spatial grids larger than 5 km, convective parameterization has been
used in regional model studies (e.g. (Zhang and Mcfarlane, 1995; Clark et al., 2009; Dudhia,
2014)). For model spatial grids smaller than 5 km, generally considered convection-permitting
scale, numerous regional model studies have suggested to turn off the cumulus scheme (e.g. (Prein
et al., 2015; Wang et al., 2021b; Weisman et al., 1997; Weisman et al., 2008; Done et al., 2004;
520  Gao et al., 2017)), especially if the cumulus scheme is not scale-aware (Wagner et al., 2018).
Therefore, we have chosen to turn off the cumulus scheme here for the inner domain (D2) with the
4 km spatial resolution. Future work will explore the use of a scale-aware cumulus schemes such
as the Grell-Freitas scheme (GF, (Grell and Freitas, 2014)) after incorporating the fix of including
transport of the chemistry by the GF scheme when GF is selected, as described by Li et al. (2018,
525 2019).

For the microphysics scheme, an inexpensive scheme is typically sufficient for model spatial grids
greater than 10 km but a more complex scheme that accounts for the prediction of the mixed phases
(6-class schemes, including graupel) and number concentrations (double-moment schemes) is

530  required (Han et al., 2019). Therefore, we consider these three schemes in the current work: the
Lin scheme (Lin et al, 1983; Chen and Sun, 2002), the WRF Single-Moment 6-Class
Microphysics Scheme (WSM6) (Hong and Lim, 2006) and the Morrison scheme (Morrison et al.,
2009). The former two is a single-moment 6 class scheme and the latter one is a double-moment
scheme, which also predicts the number concentration of the hydrometer besides the total amount.

535  All of the three schemes include the simulations of graupel which is shown to help with the
simulation of convection for higher resolution simulation (Brisson et al., 2015). At convective-
permitting scales, the graupel size representation could play a more important role in the
precipitation prediction than the number of moments (single .vs. double) in certain cases (Adams-
Selin et al., 2013).

540
For the shortwave radiation scheme, we only consider the two-stream multiband Goddard scheme
(Chou et al., 1998) and the Rapid Radiative Transfer Model for GCMs (RRTMG) (Iacono et al.,
2008), which both include the direct aerosol radiation feedback. For the longwave radiation, we
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select the RRTMG and the Rapid Radiative Transfer Model (RRTM) schemes (Mlawer et al.,

545  1997). RRTMG for both shortwave and longwave radiation schemes are recommended to pair
together in the model by the developing team of WRF-Chem. For the planetary boundary layer
(PBL) scheme and the corresponding surface layer scheme, we consider the nonlocal boundary
layer scheme — the Yonsei University scheme (YSU, (Hong et al., 2006)) with the revised fifth-
generation Pennsylvania State University — National Center for Atmospheric Research Mesoscale

550  Model (MMS) (Grell et al., 1994; Jiménez et al., 2012) surface layer scheme. We also consider
two commonly used local boundary layer schemes: Mellor-Yamada-Janjic (MYJ, (Janjic, 2001))
with the ETA similarity surface layer scheme; Mellor-Yamada-Nakanishi-Niino level 2.5
(MYNN2.5, (Nakanishi and Niino, 2004)) with the MYNN surface layer scheme. When using the
YSU scheme, we also turn on the surface drag parameterization (Jiménez and Dudhia, 2012) to

555  improve topographic effects on surface winds over complex terrain. The land surface model is the
Noah land model (Chen and Dudhia, 2001), which incorporates our updates of the land surface
properties as described in Sect 2.2. Additionally, for a specific target area, other physics schemes
not mentioned here but commonly used in that area will also be tested.

560  Details regarding the selection and evaluation results of the physics scheme for the four target
areas are available in Text S2 of the SI. Here, we provide a summary of the evaluation results.
Sensitivity simulations performed for each target area are listed in Table S1 and we focus on the
testing of the following schemes: microphysics, shortwave and longwave radiation and PBL. We
evaluate four UI-WRF-Chem simulated meteorology variables with surface observations: air

565  temperature at 2m (t2), dew temperature at 2m (dewt2) or relative humidity (RH), wind speed at
10m (wspd10) and sea level pressure (pres). Results of the hourly or 3-hourly evaluation of the
meteorology variables are summarized in Table S2 and Fig S1. Overall, all the sensitivity
simulations of t2 and pres for all the target areas show the highest correlation (> 0.8). Dewt2 or
RH also show good correlation (0.59 — 0.84) with ITA-Rome showing the lowest correlation. The

570  case study of ITA-Rome is conducted over June 2023, where some areas in Italy experienced
rainfall events about one third of the month. Uncertainties of UI-WRF-Chem capturing the rainfall
events (discussed in Sect 4.2) could result in the lower correlation of RH. Comparatively, wspd10
shows lower correlation (0.22 — 0.52) with USA-Atlanta showing the lowest correlation. Across
the target areas, we find that wspd10 is most sensitive to PBL scheme compared with other

575  schemes tested, which is also found in previous studies (e.g. (Yu et al., 2022)). It is found that no
single combination of the physics scheme will result in the best performance for each meteorology
variable evaluated. The interaction of these different parametrized processes mentioned above (e.g.
convection, boundary layer mixing, microphysics and radiation) are complex (Prein et al., 2015)
and it is region, case and variable specific. Therefore, model performance can vary from region to

580  region or case to case.

Based on the evaluation results, we select the optimal combination of various physics schemes

tested as the final configuration for each target area. Since MAIA will use daily averaged data for
product generation, we also summarize the statistics of the evaluation of the daily meteorology
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585  wvariables for the four target areas in Fig 2(a), for the final configuration only. We find that UI-
WRF-Chem simulated daily t2, dewt2 and pres all show high correlation (> 0.7) and low NMB ((—
10%) — (+ 10%)) across the target areas. For evaluation of daily wspd10, correlation increases, and
bias decreases compared with hourly evaluation. For USA-Atlanta, the daily wspd10 still shows
lower correlation (~0.25) compared with other target areas. The sensitivity simulation of USA-

590  Atlanta is conducted over June 2022 and majority of the wspd10 are under 5 m s™'. It can be
challenging for the model to capture this stable condition very well. Future work could focus on
trying nudging with ground observation to improve the model performance over this area. We also
recognize that our sensitivity tests are limited to one month for each target area. We are not able
to test the performance for different seasons. Nevertheless, it provides values for understanding

595  the model sensitivity to different schemes at different locations.

Biogenic emissions for VOCs are from the MEGAN scheme and soil NOx emissions are from the
BDISNP scheme. Fire emissions are from the FLAMBE emission inventory and dust emissions
use the GOCART with AFWA modification. Here, we use MEIC 2016 as the anthropogenic

600 emission for CHN-Beijing and NEI 2017 emission inventory for USA-LosAngeles and USA-
Atlanta. The HTAP_v3 2018 is used for ITA-Rome. The gas phase chemistry is the RADM?2, and
the aerosol module is the newly added scheme MADE/SORGAM-DustSS: the MADE/SORGAM
scheme with the addition of dust and sea salt aerosol species as described in Sect 2.4.

4. Case studies for different target areas

605 4.1 Case study — CHN-Beijing

Beijing and its surrounding area in China, are affected by both local and regional emissions as well
as long-range transport (Wu et al., 2021; Zhang et al., 2018). In recent decades, the North China
Plain including the Beijing area has experienced severe PM pollution problems as a result of the
rapid economic growth and urbanization (Zhang et al., 2016). In addition to the impacts of
610  anthropogenic emission on surface PM levels, strong dust storms from the Taklamakan Desert and
the Gobi Desert sometimes can be transported downwind to the Beijing area and affect local air
quality in the springtime. Here for the CHN-Beijing target area (Fig 1(a)), we first focus on a dust
intrusion event during 24-31 March 2018, to study the impacts of chemical boundary conditions
on surface PM. Figure 3 shows the MODIS Aqua observed AOD over part of China for the period
615  of this event. The dust storm can be seen on 26 March 2018, at both the Taklamakan and Gobi
Deserts and by 28 March, strong dust clouds have been transported to Beijing and its surrounding
areas. Figure S2 displays the movement of surface observations of daily PMio mass concentration
across China from 24 March to 31 March 2018. On 27 March and 28 March 2018, high surface
PMio concentration were observed in Beijing, Tianjin and Hebei province with hourly
620  concentration exceeding 1000 ug m= (not shown here). Then, we focus on July 2018 to study the
impacts of updating land surface properties and soil NOx emission scheme on model performances.
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Figure 3. (a)—(h) MODIS Aqua Deep Blue (DB) AOD from 24-31 March 2018. The white boxes represent the UI-WRF-Chem 2
625 nested domains for outer (D1) and inner domain (D2) over CHN-Beijing, respectively. The white diagonal lines indicate the
CALIOP tracks. The magenta contour lines represent the Taklamakan and Gobi Deserts.

4.1.1 Sensitivity experiment design

For CHN-Beijing target area, we carry out a suite of sensitivity simulations using the UI-WRF-
Chem framework as shown in Table 1 to investigate the impacts of chemical boundary conditions,
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630  updated land surface properties and soil NOyx emission scheme on model performance. First, three
simulations are conducted during March 2018 to study the impacts of using MERRA-2 data to
provide chemical boundary conditions on model performance. Additionally, four simulations are
carried out for July 2018 to investigate the impacts of updating land surface properties as well as
surface soil NOx emission scheme. The simulation with “2N_def” uses the default USGS land

635  cover type and subsequently derived GVF, LAI and albedo, using a predefined look-up table. The
simulations with “2N_upd” uses the corresponding updated land cover type, GVF, LAI and albedo,
based on the 2018 MODIS land data products for the simulation period, as described in Sect 2.2.
The simulations with “2N_* snox*” use our newly developed BDISNP soil NOx emission scheme.

640 Table 1. A suite of UI-WRF-Chem sensitivity simulations with different chemical boundary conditions, land data and soil NOx
emission schemes for CHN-Beijing.

simulation name* land data® soil NOx species considered in simulation
emission® the chemical time®
boundary?
2N_upd_snox-none updated BDISNP none 03/2018
2N upd_snox-dust updated BDISNP dust + other aerosols 03/2018
2N _upd_snox-dust PSD updated BDISNP dust PSD + other 03/2018
aerosols

2N _def USGS Guenther dust + other aerosols 07/2028

2N _upd updated Guenther dust + other aerosols 07/2018
2N_upd_MEGAN updated MEGAN dust + other aerosols 07/2018
2N _upd_BDISNP updated BDISNP dust + other aerosols 07/2018

2The simulation name starting with “2N*” refers to the 2 nested domains used for CHN-Beijing as shown in Fig 1(a). The 2 nested
domains have a horizontal spatial resolution of 4 km x 4 km and 12 km x 12 km for the inner and outer domain, respectively.

"We test different land surface properties used for the UI-WRF-Chem static input data. The simulation name with “*def*” refers

645 to the use of USGS land cover type data and subsequently derived GVF, LAI and albedo, with a predefined look-up table. The
simulation name with “*upd*” refers to the use of updated land cover type, GVF, LAI and albedo data with 2018 MODIS land data
products.

“We test different soil NOx emission schemes. The Guenther scheme calculates biogenic emissions including soil NOx emissions,
without any external input datasets needed. The MEGAN scheme requires external input files to calculate biogenic emissions

650 including soil NOyx emissions. The BDISNP is our newly developed scheme. Since the USGS land data is only compatible with the
Guenther scheme, we conduct sensitivity simulations “2N_def” and “2N_upd” to evaluate the impacts of updating land surface
properties. The simulation name with “*snox*” means that the BDISNP soil NOy emission scheme is used.

dWe test different scenarios of chemical species used in MERRA-2 data for updating UI-WRF-Chem chemical boundary
conditions. “None” (simulation name with “*none*”) means that chemical boundary conditions from MERRA-2 data are not used.

655 “dust + other aerosols” (simulation name with “*dust*””) means that dust and other aerosols including sulfate, BC and OC are
considered in the chemical boundary conditions from MERRA-2 data. “dust particle size distribution (PSD) + other aerosols”
(simulation name with “*dust PSD*”) is the same as “dust + other aerosols” except that we use the ratio of averaged PSD from
AERONET observations and MERRA-2 data over 20002020 to scale the dust concentration for each size bin in the MERRA-2
data. More details can be found in Sect 4.1.1.

660 ¢We conduct the sensitivity simulations in two different time periods: March and July 2018, respectively. The simulations in March

focus on evaluating the impacts of using MERRA-2 data to provide chemical boundary conditions on model performance while
the simulations in July focus on the impacts of updating land surface properties with MODIS data and soil NOx emission scheme.
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The impacts of chemical boundary conditions are evaluated from several sensitivity experiments.
In the simulation “2N_upd_snox-none”, no chemical species from MERRA-2 data are transported
into the domain. In the simulation “2N_upd_snox-dust”, dust and other aerosols including sulfate,
BC and OC are considered in the chemical boundary condition from MERRA-2 data. Furthermore,
to constrain the chemical boundary condition for the allocation of dust concentration as a function
of different size bins, we analyze the AERONET measured aerosol volume size distribution
(AVSD) data from 2000 to 2020. If the fine mode fraction (FMF) of AOD at 500 nm is less than
0.3 (Lee et al., 2017), it is considered as a dust event. Figure 4(a) shows the averaged dust particle
size distribution (PSD) over the AERONET sites between 2000-2020 from both AERONET and
MERRA-2 data for all the dust events that occurred in CHN-Beijing. The ratio between the mean
of the AERONET PSD and MERRA-2 PSD for each of the five dust size bins is then used as a
constraint to scale the dust concentration in each bin in the MERRA-2 chemical boundary data.
The sensitivity run “2N_upd_snox-dust PSD” in Table 1 is based on this result.
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Figure 4. Averaged particle size distribution (PSD) from AERONET observations (blue line) and MERRA-2 data (the 5 colored
bins) for (a) CHN-Beijing and (b) ITA_Rome over 2000-2020 and 2000-2023, respectively. The AERONET sites used are
shown as the stars in Fig 1(a) and (b), respectively. The dark gray areas represent the AERONET variability. AERO-mean and
MERRA-2 mean represent the fraction of the PSD from each bin over the sum of the 5 bins. Ratio-mean is the ratio of the total
PSD of AERONET over MERRA-2 for each bin.

107!

Three UI-WRF-Chem sensitivity simulations in Table 1 are run from 18 March to 31 March 2018,
for evaluating the impacts of using MERRA-2 data to provide chemical boundary conditions. The
simulation results with the first 6 days are used as initialization. Model output from 24 March to
31 March 2018, are used for analysis, unless noted otherwise. The rest of the four simulations are
used for evaluating the impacts of updating land surface properties and soil NOx emission scheme
on model performance. They are carried out from 24 June to 31 July 2018, and model outputs from
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1 July to 31 July are used for data analysis. We mainly use model output from the inner domain
690  (D2) for data analysis unless noted otherwise.

4.1.2 Impacts of chemical boundary conditions on surface PM and AOD
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Figure 5. Scatter plot of hourly surface PM, 5 concentration between model (y axis) and ground observation (x axis) for surface
sites in the inner domain (D2) of CHN-Beijing for 24-31 March 2018. (a)—(c) refer to the UI-WRF-Chem sensitivity simulations
695 with different chemical boundary conditions being considered using MERRA-2 data (Table 1). (a) no chemical species, (b) dust
and other aerosols and (c) same as (b) except that the dust concentration is scaled based on constraining MERRA-2 dust PSD
data with AERONET PSD climatology data. (d) is from MERRA-2 simulated surface PM, s concentration. Also shown on the
scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean =+ standard deviation for observed (x)
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and model-simulated surface PMa 5 (y), the number of collocated data points (N), the density of points (the color bar), the best fit
700 linear regression (the solid black line) and the 1:1 line (the dashed black line).

First, we evaluate the effectiveness of using MERRA-2 data to provide chemical boundary
conditions in capturing this dust long-range transport event in spring 2018. Figure 5 shows the
overall evaluation of model simulated hourly surface PM2.s mass concentration against ground
705  observations over PTA-Beijing during 24-31 March 2018. Results are presented for three
sensitivity experiments, as described in section 4.1.1. Without considering any chemical species
in the boundary, the UI-WRF-Chem simulated PM2s concentration (2N _upd snox none)
underestimates ground observations with a MB of —59.3 ug m=. After including dust and other
aerosols in the boundary conditions, the UI-WRF-Chem simulated PM»s concentration
710 (2N _upd_snox_dust) increases from 27.9 ug m™ to 44.3 pug m and thus reduces the MB to —42.9
pg m3. Correlation (R) also improves with an increase from 0.27 to 0.47. By constraining the dust
PSD in the MERRA-2 data with the climatology data from AERONET, the UI-WRF-Chem
simulated PM2s5 (2N _upd_snox dust PSD) further improves the model performance with MB of
—17 pg m and R of 0.52. It also outperforms the MERRA-2 simulated surface PM s concentration
715 (MB of —33.7 ug m and R of 0.39).

Figure 6(a) and Figure S3 show the time series of hourly surface PMzs and PMio concentration
from 24-31 March 2018 for both model simulations and ground observations. During 27-28
March, when the dust front intruded PTA-Beijing, hourly observations of surface PMa.s and PMio
720  concentration averaged over all the sites could reach approximately 150 and 900 pug m>,
respectively. The UI-WRF-Chem simulation without chemical boundary conditions
(2N _upd_snox none) misses this peak for both PMz s and PMo while both the UI-WRF-Chem
simulation with chemical boundary condition (2N_upd snox_dust) and MERRA-2 data capture
this peak for PMz s but miss the peak for PMio. The UI-WRF-Chem simulation with dust PSD
725  constrained (2N_upd snox_dust PSD) capture both the peak of PM2s5 and PMio. Compared with
the simulation without boundary conditions (2N_upd_snox_none), adding chemical boundary
conditions (2N_upd_snox_dust) improves model performance with increased correlation for both
PM25 (0.41 to 0.72) and PMjo (0.06 to 0.23). The simulation with dust PSD constrained
(2N _upd_snox_dust PSD) does not improve the correlation of PMa s (0.65) but does for PMio
730  (0.28), compared with the simulation using dust in the chemical boundary (2N _upd_snox_dust).

Not only does considering chemical boundary conditions improve surface PM mass concentration,
it also helps with the total aerosol column amount and vertical distribution. First, Figure 6(b)—(d)
shows the AOD evaluation between model simulations and AERONET observations. Without
735  considering boundary conditions, the UI-WRF-Chem simulation (2N _upd snox none, 0.05)
significantly underestimates the AERONET observed AOD (0.73) and shows poor correlation
(0.02). Including dust and other aerosols (2N_upd_snox_dust) enhances UI-WRF-Chem simulated
AOD (0.29) and correlation (0.79). Overall, constraining the dust in the boundary
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(2N_upd_snox_dust PSD) shows the best performance with simulated AOD of 0.93 and
740  correlation of 0.83.
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Figure 6. (a) time series of hourly surface PM» 5 concentration averaged over surface sites in the inner domain (D2) of CHN-
Beijing for 24-31 March 2018, from model simulations and ground observations. 2N_upd_snox-none/dust/dust PSD refer to the

745 UI-WRF-Chem sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 data
(Table 1): no chemical species; dust and other aerosols; dust concentration is scaled based on constraining MERRA-2 dust PSD
data with AERONET PSD climatology data. Also shown on the plot is the mean + standard deviation of surface PM 5 for model
simulations or observations as well as the correlation coefficient (R). (b)—(d): scatter plot of hourly AOD between model (y axis)
and AERONET observation (x axis) for 24-31 March 2018. Also shown on the scatter plot is R, the root-mean-square error

750 (RMSE), the mean =+ standard deviation for observed (x) and model-simulated AOD (y), the number of collocated data points
(N), the best fit linear regression (the solid black line) and the 1:1 line (the dashed black line).

We then compare the UI-WRF-Chem simulated vertical aerosol profile with the Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) data for the outer domain (D1) during 26-28
March, when dust reaches the PTA-Beijing domain. Figure 7 shows the CALIOP derived aerosol
755  extinction coefficient, aerosol type as well as UI-WRF-Chem simulated extinction coefficient. The
CALIOP ground tracks are located within the UI-WRF-Chem outer domain (D1) (Fig 3) and
model grids that overlap with the tracks are selected. From both the CALIOP aerosol extinction
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Figure 7. Comparison of CALIOP—derived vertical profile of aerosol extinction coefficient (532 nm, (a)—-(c)) and aerosol type
((d)~(H)) with UI-WRF-Chem simulated extinction coefficient for CHN-Beijing over 2628 March 2018. UI-WRF-Chem outputs
are from the outer domain (D1) that overlap with CALIOP tracks (Fig 3). (g)—(i) are the extinction coefficients from the Ul-
WREF-Chem sensitivity simulation 2N_upd_snox-dust, where dust and other aerosols are considered in the MERRA-2 chemical
boundary conditions. (j)—(1) are the extinction coefficients from UI-WRF-Chem sensitivity simulation 2N_upd_snox-dust PSD
where dust concentration is scaled in the MERRA-2 chemical boundary conditions, based on constraining MERRA-2 dust PSD
data with AERONET PSD climatology data. In (a)—(f), the gray areas represent cloud. In (d)—(f), different aerosol types are
classified: d mari for dusty marine, p dust for polluted dust, ¢ cont for clean continental, p cont for polluted continental, ¢ mari for
clean marine. ND includes areas that have clean air and aerosol type not being determined.

coefficient and aerosol type, we can see that dust is dominating the vertical distribution above ~3—
4 km and mixed with marine and anthropogenic aerosols in the boundary layer. Without
considering aerosols in the chemical boundary conditions, the UI-WRF-Chem simulated
extinction coefficient is negligible above the boundary layer (not shown here). After considering
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dust and other aerosols in the chemical boundary conditions, we can see the increase in the
extinction coefficient in the vertical distribution (Fig 7(g)—(i)). Constraining the dust in the

775  boundary (2N_upd snox_dust PSD, Fig 7(j)—(1)) further enhances the vertical distribution of the
aerosol extinction coefficient, which matches better with the CALIOP observations. This reflects
the effectiveness of including dust and other aerosols in the chemical boundary condition to better
capture the vertical distribution of aerosol properties in this dust intrusion event. We note that
CALIOP data is also subject to uncertainties of the lidar ratio used in deriving the extinction, and

780  so is the extinction modeled by UI-WRF-Chem (Yang et al., 2013). Hence, CALIOP data is used
as a relative reference to assess the model improvement.

Since PTA-Being is located downwind of the dust source regions in this case, there could be
uncertainties in simulating the transport of different dust size bins in MERRA-2 data from source

785  regions. Thus, our constraining method could provide an effective way to improve the dust size
distribution in the boundary conditions and subsequently improve model simulated surface PM
concentration as well as vertical distribution of aerosols. This method could also benefit other
PTAs such as ITA-Rome, that can be affected by dust transport events, which will be discussed in
Sect 4.2.

790 4.1.3 Impacts of updated land surface properties on model performance

The UI-WRF-Chem model simulated surface skin temperature (TSK) is evaluated with satellite
observations of land surface temperature (LST) from MODIS onboard Terra and Aqua for July
2018. We first regrid the MODIS daily LST data into the WRF-Chem model grids. The Beijing-
Tian-Hebei region is one of the highly urbanized clusters in the world and has experienced intense
795  urban heat island (UHI) effects in the past decade (Wang et al., 2016; Clinton and Gong, 2013).
First, by comparing the default and updated land cover type (Fig 8(a) and Fig 8(f)), we can see that
the updated land cover type captures the urban growth over the region. The corresponding land
surface properties including LAI, GVF and albedo also show changes with the updated data (Fig
S4). Both daytime (~10:30 am and ~1:30 pm LT) (Fig 8(b) and Fig S5(a)) and nighttime (~10:30
800 pm and ~1:30 am LT) (Fig 8(g) and Fig S5(e)) LST from MODIS Terra and Aqua show the UHI
phenomenon over the region. Our UI-WRF-Chem model simulated TSK with updated land surface
properties can capture the UHI spatial pattern with higher temperature in urban areas than rural
areas for both daytime and nighttime. It matches the spatial pattern of satellite observed LST UHI
better than the UI-WRF-Chem simulation with use of the default USGS land cover type and other
805  surface properties, which is consistent with our previous work (Wang et al., 2023). Figure 2(b)
shows the Taylor Diagram of comparing UI-WRF-Chem simulated LST with MODIS Terra and
Aqua daytime and nighttime, respectively. We find that the UI-WRF-Chem simulated TSK with
updated land surface properties decreases the relative bias for both Terra and Aqua daytime and
nighttime, compared with the UI-WRF-Chem simulation using the default USGS land surface
810  properties. The model simulated TSK with updated land surface properties also results in an
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increase in correlation for the Aqua daytime period compared with the model simulation using the
USGS land surface properties.

(b) LST-MODIS Terra(D) (c) TSK(D)-USGS
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815 Figure 8. Comparison of UI-WRF-Chem simulated surface skin temperature (TSK) with MODIS Terra observed land surface
temperature (LST) for CHN-Beijing in July 2018. (a) and (f) are the land cover type from the default USGS data and the updated
data with 2018 MODIS land data. (b) and (g) are the MODIS Terra LST during daytime (D) and nighttime (N), respectively. (c)
and (d) are model simulated TSK averaged over Terra overpass time during daytime from UI-WRF-Chem sensitivity simulations
2N_def (default USGS land cover type and subsequently derived GVF, LAI and albedo) and 2N_upd (updated land cover type,

820 GVF, LAI and albedo with 2018 MODIS land data) in Table 1, respectively. (e) is the ratio between (d) and (c). (h)—(j) are the
same as (c)—(e) but averaged over Terra overpass time during nighttime. Oceans are masked as grey colors on the plots for (b)—

(e) and (2)-()-

Figure S6 shows the potential impacts of updated land surface properties on model simulated
planetary boundary layer height (PBLH) and subsequently on surface PM.s concentration. We

825  find that the PBLH mainly increases in the urban areas where the land surface temperature
increases, which in turn leads to a decrease in surface PM» 5. Our work shows the promising use
of updated land surface properties with timely satellite data to better capture the land cover type
and other land surface properties for areas with fast urban development. To better study the impacts
of UHI in the region, urban canopy model could be used to include more details about the

830  underlying urban surface feature and better simulate the physical processes in the boundary layer
(He et al., 2019; Liang et al., 2021) with a finer spatial resolution, which is beyond the scope of
the current work.

26



https://doi.org/10.5194/egusphere-2025-1360
Preprint. Discussion started: 5 May 2025 G
© Author(s) 2025. CC BY 4.0 License. EGUs P here

4.1.4 Impacts of updated soil NOx emission scheme on model performance

835  Our previous work (Sha et al., 2021) has shown the improvement of model simulated NO; VCD,
when evaluated against TROPOMI NO; VCD over croplands in California, using the BDISNP
soil NOx emission scheme. Here, we also use TROPOMI NO, VCD to evaluate UI-WRF-Chem
simulated NO2 VCD over croplands in the outer domain (D1) of CHN-Beijing for July 2018. Daily
TROPOMI NO; data are regridded to UI-WRF-Chem grids with averaging kernels being applied.

840  Hourly data from UI-WRF-Chem output, close to the TROPOMI overpass time (~1:30 PM LT)
are averaged to compare with TROPOMI data. First, Figure S7 shows the UI-WRF-Chem
simulated monthly mean soil NOx emissions using the default emission scheme — MEGAN
(2N_upd MEGAN in Table 1) and the updated scheme — BDISNP (2N _upd BDISNP in Table
1), respectively. The MEGAN scheme (Fig S7(a)) simulates low soil NOx emissions over the

845  whole domain and the BDISNP (Fig S7(b)) instead simulates higher soil NOx emissions in non-
urban areas. Croplands show the largest soil NOx emissions due to the use of fertilizer.

(a) TROPOMI NO, VCD (b)

MEGAN NO, VCD (c) BDISNP NO, VCD

40° N

115° E 120° E

8 0 8 0 8

2 4 6 2 4 6 2 4 6
(10> molec cm~2) (10> molec cm™?) (10> molec cm~2)

Figure 9. Monthly mean NO, tropospheric vertical column density (VCD) over the outer domain (D1) of CHN-Beijing for July

850 2018 from TROPOMI observation and model sensitivity simulations. Only model grids identified as croplands are shown on the
plots. (a) TROPOMI observations; (b) UI-WRF-Chem sensitivity simulation 2N_upd MEGAN in Table 1 using the MEGAN
scheme to calculate soil NOy emissions; (¢) UI-WRF-Chem sensitivity simulation 2N_upd BDISNP in Table 1 using the BDISNP
scheme to calculate soil NOx emissions. The white box represents the inner domain (D2) of CHN-Beijing.

Then, we compare the model simulated tropospheric NO2 VCD with TROPOMI NO; VCD for
855  July 2018 (Fig 9 and Fig 10). We can find that both simulations underestimate TROPOMI NO>
VCD (2.2 x 10" molecules cm™) by 1.4 x 10" and 1.3 x 10'> molecules cm™ for the MEGAN and
BDISNP respectively (Fig 10(a) and (b)) over the whole domain. Over croplands, we can see the
enhancement in the model simulated NO2 VCD (Fig 9(c)). The model simulated NO, VCD
increases from 1.4 x 10" using the MEGAN scheme to 1.7 x 10'> molecules cm™ using the
860  BDISNP scheme. The BDISNP decreases MAE from 1.59 x 10" molecules cm™ to 1.53 x 10°
molecules cm™ over the whole domain mainly due to the improvement over croplands. MAE for
croplands decreases from 1.88 x 10'°> molecules cm™ to 1.77 x 10'°> molecules cm™ (Fig 10(c) and
(d)). The increase in soil NOx emissions has potential impacts on surface nitrate. Figure S8 shows
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that the increase in surface soil NOx emissions leads to the increase in surface nitrate up to 30% in
865  rural areas. Due to the lack of surface observation of nitrate, we are limited to quantify the impacts
of the improvement of soil NOx emissions on surface nitrate. The MAIA satellite mission coupled
with the Geostationary Environment Monitoring Spectrometer (GEMS) (Kim et al., 2020) satellite
mission could provide a synergetic opportunity to evaluate both gas and aerosol chemistry.
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Figure 10. Scatter plot of daily tropospheric NO, VCD between model (y axis) and TROPOMI observation (x axis) over the outer

domain (D1) of CHN-Beijing for July 2018. (a) and (c) refer to the UI-WRF-Chem sensitivity simulation using the MEGAN

scheme (2N_upd MEGAN in Table 1) and (b) and (d) refer to the sensitivity simulation using the BDISNP scheme
(2N_upd_BDISNP in Table 1) to calculate soil NOx emissions, respectively. (a) and (b) are for model grids over the whole

870
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875 domain while (c) and (d) are for model grids that are identified as croplands. Also shown on the scatter plot is the correlation
coefficient (R), the mean absolute error (MAE), the mean + standard deviation for observed (x) and model-simulated
tropospheric NO> VCD (y), the number of collocated data points (N), the density of points (the color bar), the best fit linear
regression (the solid black line) and the 1:1 line (the dashed black line).

4.2 Case study — ITA-Rome

880  Our case study over CHN-Beijing target area has demonstrated the benefits of using MERRA-2
data to provide chemical boundary conditions for capturing long-range transport events such as
dust intrusion. Some of the other target areas including ITA-Rome are also impacted by dust
transport. Saharan dust transport poses a significant concern on air quality in Europe and the
Mediterranean Basin. Previous work has shown that Saharan dust outbreaks are more frequent in

885  southern Europe including Italy than northern Europe (Querol et al., 2009; Viana et al., 2014; Pey
et al., 2013; Wang et al., 2020a). For example, Pey et al. (2013) showed that across the
Mediterranean Basin, African dust outbreaks occurred from 30% to 37% of the annual days in the
southern sites and less than 20% of the days in the northern sites. The work of Barnaba et al. (2022)
investigated the impacts of African dust on surface PMio concentrations in Italy using surface

890  monitoring sites in Italy from 2006—2012 and found that African dust affected surface PMg levels
in Northern and Southern Italy for about 10% and 30% of dates in a year, respectively.

Here, we focus on June 2023, where Saharan dust affected the PM concentration in ITA-Rome,
and investigate the benefits of using MERRA-2 data to provide chemical boundary conditions for

895  driving UI-WRF-Chem. For example, one Saharan dust intrusion into Italy occurred from 19-22
June 2023 as seen from the VIIRS AOD (Fig S9) and MERRA-2 simulated dust AOD also captures
this dust intrusion event (not shown here). We conduct three UI-WRF-Chem model sensitivity
simulations with different chemical boundary conditions to evaluate model simulated surface PM
concentration and AOD: (1) simulation “2N-none”: no chemical species from MERRA-2 data are

900 transported into the domain; (2) simulation “2N-dust”: dust and other aerosols including sulfate,
BC and OC are considered in the MERRA-2 chemical boundary condition; (3) simulation “2N-
dust PSD”: dust concentration of different size bins in the MERRA-2 boundary conditions is
constrained using the AERONET PSD climatology data from 2000-2023. AERONET sites close
to the Saharan dust source region are used for constraining MERRA-2 PSD (Fig 1(b)). Figure 4(b)

905  shows the averaged PSD over the AERONET sites between 2000-2023 from both MERRA-2 and
AERONET data. The ratio between the mean of the AERONET PSD and MERRA-2 PSD for each
of the five dust size bins is then used as a constraint to scale the dust concentration in each bin in
the MERRA-2 chemical boundary data in the simulation “2N-dust PSD”".

910 Like the case study in CHN-Beijing, using MERRA-2 data to provide chemical boundary
conditions for UI-WRF-Chem over ITA-Rome also improves both model simulated surface PM
concentration and AOD (Fig 11). Overall, for the whole month of June, the correlation R from the
sensitivity run 2N-none increases from 0.10 to 0.47, 0.46 to 0.61, and 0.15 to 0.62 for surface
PM. s, surface PM1p and AOD, respectively compared with the sensitivity simulation 2N-dust. The
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915  MB decreases from —7.2 to 2.5 pg m3, -14.8 to 2.2 pg m=3, and —0.23 to —0.13 for surface PMz s,
PMio and AOD respectively. Using constrained dust concentration in the MERRA-2 data (2N-dust
PSD) further reduces the MB for surface PMz s and AOD and slightly overestimates surface PMjo,
compared with simulation 2N-dust. In contrast, Both MERRA-2 simulated surface PM2 sand PMio
overestimates surface observations with MB of 6.4 ug m>and 21.8 pg m, respectively. UI-WRF-

920  Chem simulated surface PM2.s and PMio have slightly lower correlation than MERRA-2 data but
has much lower MB than MERRA-2 data, when evaluated against ground observations. During
June 2023, some parts of the ITA-Rome domain experienced precipitation events (Fig S10), which
occurred mostly during the first half of the month. Compared to the Global Precipitation
Measurement Missions (GPM) observed precipitation and MERRA-2 simulated precipitation (Fig

925  S10), UI-WRF-Chem simulates higher precipitation, which could result in higher wet deposition
of aerosols and lower concentration. Figure S11 shows the comparison of model simulated surface
daily PM s and PMo with ground observations for the first and second half of the month in June
2023, respectively. We can see that UI-WRF-Chem simulation 2N-dust underestimates both
surface PMz.s and PMio during the first half of the month (Fig S11(a)—(h)) with MB of -3.0 and —

930 5.5 ug m?, respectively, while MERRA-2 overestimates surface PM, s and PM;o with MB of 5.1
and 15.7 pg m?, respectively. During the second half of the month (Fig S11(i)—(p)), UI-WRF-
Chem simulation 2N-dust underestimates surface PM,s with MB of —2.0 ug m™ but slightly
overestimates surface PMio with MB of 0.7 pg m=. MERRA-2 still overestimates surface PM s
and PM,o with MB of 7.4 and 28.4 ug m=, respectively. Due to the coarse spatial resolution of

935  MERRA-2 data, it may not resolve the localized convective processes well, which could affect the
subsequent wet deposition. There are also uncertainties associated with the dust size distribution
in MERRA-2 data, which could also play a role in the wet deposition.

Additionally, uncertainty in UI-WRF-Chem model simulated wet deposition of aerosols could also

940  play a role in the model results discussed above. Previous work has mostly focused on dry dust
events (e.g. (Zeng et al., 2020)), and less has focused on the wet dust events, especially dust wet
deposition. Jung and Shao (2006) implemented a below-cloud dust wet deposition scheme for the
UOC dust emission scheme in WRF-Chem. Currently, no dust wet scavenging scheme is
implemented for the original GOCART or GOCART AFWA dust scheme in WRF-Chem. As in

945  previous work (Su and Fung, 2015), we have implemented a simple scheme to allow dust wet
scavenging by large scale and convective precipitation by assigning a scavenging efficiency for
different dust size bins in the model. Future work will focus on implementing a more complex dust
wet deposition scheme to better account for the scavenging process that consider the dust particle
size distribution etc., such as the work of Tsarpalis et al. (2018) and Zhao et al. (2003).

950  Nevertheless, the case study over ITA-Rome again demonstrates the benefits of using MERRA-2
data to drive UI-WRF-Chem for capturing the dust transport event.
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Figure 11. Scatter plot of daily PM> 5 concentration ((a)—(d)), PM;o concentration ((e)—(h)), and AOD ((i)—(1)), between model (y
955 axis) and ground observation (x axis) over the inner domain (D2) of ITA-Rome for June 2023. (a)—(c), (e)—(g), and (i)—(k) refer
to the UI-WRF-Chem sensitivity simulations with different chemical boundary conditions being considered using MERRA-2
data. 2N-none: no chemical species; 2N-dust: dust and other aerosols; 2N-dust PSD: same as 2N-dust except that the dust
concentration is scaled based on constraining MERRA-2 dust PSD data with AERONET PSD climatology data. (d), (h) and (1)
show the MERRA-2 simulated daily PM, s, PMjo and AOD, respectively. Also shown on the scatter plot is the correlation
960 coefficient (R), the root-mean-square error (RMSE), the mean + standard deviation for observed (x) and model-simulated

PM, s/PM;o/AOD (y), the number of collocated data points (N), the best fit linear regression (the solid black line) and the 1:1 line
(the dashed black line).

4.3 Case study — USA-LosAngeles and USA-Atlanta
Each target area has its unique feature of aerosol composition and various factors that affect the

965  aerosol concentration, we have demonstrated the impacts of dust transport on surface PM
concentration and AOD over CHN-Beijing and ITA-Rome target areas. Here, we focus on some
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fine tuning or testing over USA-Los Angeles and USA-Atlanta target areas to improve the model
simulation of surface PM concentration and AOD.

4.3.1 USA-LosAngeles

970  For the USA-LosAngeles target area (Fig 1(c)), we investigate the impacts of dust emissions on
surface PM concentration and AOD. Part of the outer domain (D1) over the USA-LosAngeles
target area (here defined as the dust-prone region, the orange box in Fig S12), located in the
southwestern U.S. are desert regions with higher soil erodibility than other parts of the domain. It
is common in WRF-Chem to tune some of the parameters in the dust emission scheme including

975  the soil erodibility to better match model simulated PMo concentration and AOD with satellite-
and ground-based observations (e.g. (Su and Fung, 2015)). This approach has been mainly
focusing on the total atmospheric dust load instead of an individual dust event and it is sufficient
to capture the general magnitude of dust aerosol patterns. We have adopted this simple approach
here to do some dust parameter tuning to improve model simulated surface PMio concentration

980  and AOD with a focus on the overall magnitude.
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Figure 12. Scatter plot of daily surface PM;o concentration and hourly AOD between model (y axis) and ground observation (x
axis) over the dust-prone region in USA-LosAngeles for July 2018. (a)—(i) are for surface daily PM;qand (j)—(r) are for hourly

985 AOD from two groups of sensitivity simulations: (1) gamma = 1, 1.5, 2, 2.5, 3 while alpha stays as 1; (2) alpha=0.2, 0.3, 0.4, 0.5
while gamma stays as 1, respectively. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error
(RMSE), the mean =+ standard deviation for observed (x) and model-simulated surface PM;o/AOD (y), the number of collocated
data points (N), the best fit linear regression (the solid black line) and the 1:1 line (the dashed black line).

990  There are several parameters that can be used to tune dust emissions in the WRF-Chem model.
One is the dust gamma (gamma for short here), which tunes the soil erodibility in an exponential
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manner. Soil erodibility serves as an important factor for identifying dust source and estimating
dust emission flux in the model. The other one is the dust alpha (alpha for short here), which
linearly tunes the total dust emissions. If we use the default setting (gamma=1, alpha = 1), both
995 model simulated surface daily PMio concentration and hourly AOD overestimate surface
measurements of PMio and AOD in the dust-prone region (Fig 12(a) and (j), Fig S13 and S14).
Model simulated surface PMa.s concentration also overestimates surface measurements of PMz s
(Fig S13 (a)). We conduct two groups of sensitivity simulations to test the responses of model
simulated PM1o and AOD to a range of gamma and alpha values, respectively. For the first group
1000  test, we set the gamma with 1.5, 2, 2.5 and 3 respectively, while keeping alpha value as 1. For the
second group test, we set the alpha with 0.2, 0.3, 0.4, and 0.5 respectively, while keeping gamma
value as 1. As gamma increases from 1 to 3 with the constant alpha value of 1, correlation increases
for AOD and decreases for surface PMio (Fig 12). MB and RMSE also decreases with increasing
gamma value until when gamma value increases to 2.5 for both AOD and PMi¢. As alpha decreases
1005  from 1 to 0.2 with the constant gamma of 1, both MB and RMSE for surface PMio and AOD
decrease until alpha value drops to 0.3. The correlation almost stays the same or slightly increases
for both PM19 and AOD with decreasing alpha value. Therefore, we choose gamma of 1 and alpha

of 0.3 as the final configuration to account for the model performance of both PM;o and AOD.

1010  Here, we use one month of data to tune the dust emissions by focusing on the magnitude of the
total dust load. It is challenging to fine tune each individual dust event and acquire consistent
results. The work of Hyde et al. (2018) simulated nine dust storms in south-central Arizona with
WRF-Chem using the GOCART AFWA dust emission scheme and the model unevenly
reproduced the dust-storm events with some cases overestimating surface PMio and some cases

1015  underestimating surface PMio. Our evaluation of AOD with AERONET observation is rather
limited spatially as we only have one AERONET site for the dust-prone region. We also conduct
the same set of sensitivity simulations for July 2019 (results not shown here) and the sensitivities
to the tuned parameters are comparable to the results of 2018 in general, which further confirms
the validity of the simple approach we have used here. Additionally, more recent work have

1020  incorporated the albedo-based drag partition (Chappell and Webb, 2016) from satellite data into
the GOCART AFWA dust emission scheme to better represent the impacts of roughness features
from vegetation and non-vegetation such as soil and rocks and demonstrated improved model
performance in capturing individual dust event over the Southwestern U.S. (Legrand et al., 2023;
Dhital et al., 2024). It is beyond the scope of this work to implement this method, but future work

1025  could explore the use of this advanced method and focus on longer periods of model simulation to
further evaluate model performances.

4.3.2 Case study — USA-Atlanta

As described in Sect 3, for the standard PTA nested domain setup, we have chosen to turn off the
1030  cumulus parameterization in the inner domain (D2) with the spatial resolution of 4 km and let the
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model rely on the microphysics scheme to explicitly resolve the convection. Southeastern U.S.
including the PTA-Atlanta (Fig 1(d)) target area experiences pulse-type summer convective
precipitation due to the interplay of land-sea breezes, outflow boundaries and complex terrain etc.
(Case et al., 2011). Here, we focus on June 2022 over PTA-Atlanta to demonstrate the impacts of

1035  different setups of microphysics and cumulus schemes on model simulated precipitation and
subsequent surface PMz 5 concentration. We perform six UI-WRF-Chem sensitivity simulations
with different setups of microphysics and cumulus schemes while keeping other schemes the same:
(1) mp2cu5: Both domain 1 and domain 2 have the Lin microphysics scheme on. Domain 1 and
domain 2 have the G3D cumulus scheme on and off, respectively; (2) mp2cuSbothon: same as (1)

1040  except that both domain and 1 and domain 2 have the G3D cumulus scheme on; (3) mp2cu3bothon:
same as (2) except that both domain 1 and domain 2 have the GF cumulus scheme on; (4) mp10cu5;
(5) mplOcuSbothon; and (6) mpl0Ocu3bothon. (4)—(6) are the same as (1)—(3) except that both
domain 1 and domain 2 have the Morrison microphysics scheme on. Here, the difference between
(1) and (2) illustrates the impacts of turning on/off the cumulus scheme at the 4 km resolution. The

1045  difference between (1), (2) and (1), (3) evaluates the impacts of using a traditional cumulus scheme
vs. a scale-aware cumulus scheme. Corresponding difference between (1)—(3) and (4)—(6)
represents the impacts of the microphysics scheme.

We first focus on the evaluation of daily precipitation. Although, hourly precipitation rate can be

1050  important to tell the intensity of the precipitation event, verification of the hourly precipitation can
raise double-penalty issues at the finer resolution (Rossa et al., 2008; Gilleland et al., 2009), where
a slight shift in the prediction of the timing or location of the precipitation event compared with
the ground truth could result in the verification penalties in both space-time. Here, we accumulate
the hourly precipitation into daily precipitation to help offset the errors associated with the timing

1055  of the event. Figure S15 shows the monthly averaged daily precipitation from UI-WRF-Chem
model sensitivity simulations (1)—(6) with surface observations. In general, all the sensitivity runs
overestimate the precipitation. Turning on the cumulus scheme in domain 2 when using the
traditional G3D scheme results in larger bias compared to the results of turning the G3D scheme
off. The work of Zhang et al. (2021) also found that the WRF model had better prediction of

1060  precipitation in the central Great Plains in the U.S. when turning off the G3D cumulus scheme
with the spatial resolution of 4 km, compared to the sensitivity run of turning on the G3D cumulus
scheme. Turning off the cumulus scheme in domain 2 when using the G3D scheme is comparable
to the results of the simulation using the scale-aware GF cumulus scheme.

1065  We then focus on the impacts on surface PMz 5 concentration. Figure S16 shows the spatial map
of surface PM2 5 concentration for June 2022 and Fig 13 compares model simulated daily PMa.s
concentration with ground observation. Both sensitivity simulations (2) and (4) with the G3D
scheme on for the inner domain (D2) simulate higher precipitation than other simulations, which
leads to lower surface PMas concentration (Fig S16(b) and (e)). Overall, the surface PM> s

1070  concentration from sensitivity simulations (2) and (4) have the lowest correlation (0.34 and 0.49)
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compared to other simulation (0.52-0.61) (Fig 13). They also have higher MB (5.1 pg m and —
5.9 ug m) compared with other simulations (—4.7 to —3.2 ug m=) (Fig 13). Sensitivity simulations
over CHN-Beijing also show similar results related to surface PMazs concentration when
contrasting the sensitivity simulation with or without the G3D cumulus on for the inner domain
(not shown here). This validates our choice of turning the cumulus scheme off for the inner domain
(D2) when using the traditional cumulus scheme such as G3D. Surface PM> s concentration from
the sensitivity simulations, which turn off the G3D cumulus scheme ((1) and (4)) is comparable to
or even better than the results from the sensitivity simulations (3) and (6) which turn on the scale-
aware cumulus scheme GF.
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Figure 13. Scatter plot of daily surface PM> 5 concentration between model (y axis) and ground observation (x axis) over the inner

domain (D2) of USA-Atlanta for June 2022. (a)—(f) are the UI-WRF-Chem sensitivity simulations with different setups of
microphysics and cumulus schemes. (a)—(c) all have the Lin microphysics scheme on for domain 1. (a) has the Lin microphysics
scheme on for domain 2 and no cumulus scheme is used for domain 2. (b) is the same as (a) except that the G3D cumulus scheme
is turned on for domain 2. (c) is same as (b) except that the GF cumulus scheme is used for domain 2. (d)—(f) are the same as (a)—
(c) except that the Morrison microphysics scheme is used for both domain 1 and domain 2. Also shown on the scatter plot is the
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There are some uncertainties in this case study. First, our evaluation is limited in time. A longer
dataset would be more helpful to reveal model performances in other seasons too (Jeworrek et al.,
2021). Also, we have only considered a limited number of model configurations. Previous work
1095  have shown that the prediction of precipitation is also sensitive to other schemes in the model such
as the PBL scheme (Klein et al., 2015; Argiieso et al., 2011). Most previous work have focused on
the impacts of microphysics and cumulus scheme on precipitation and less have focused on the
coupling with the aerosol fields. The process of handling aerosol-cloud interactions would be
another source of uncertainty here. Lastly, deficiencies in MERRA-2 boundary conditions could
1100  also introduce uncertainties or biases in the WRF-Chem simulation (Zhang et al., 2021).

5. Conclusion and discussion

We have developed the Unified Inputs (of initial and boundary conditions) for WRF-Chem (UI-
WRF-Chem) modeling framework, based on the standard WRF-Chem model to support the MAIA
satellite mission, which aims to study how different types of PM air pollution affect human health.
1105  The UI-WRF-Chem outputs will be integrated together with satellite and ground observations data
to generate surface total PM and speciated PM maps. We have made the following major updates
in the UI-WRF-Chem modeling framework: (1) using NASA GEOS data including GEOS FP and
MERRA-2 data to provide both meteorological and chemical initial and boundary conditions to
drive WRF-Chem simulations at a finer spatial resolution for both forecasting and reanalysis
1110  modes; (2) developing the WEPS stand-alone module to process both global and regional
anthropogenic emissions as well as fire emissions; (3) updating land surface properties (land cover
type, LAI, GVF and albedo) with MODIS land products in a timely fashion; (4) using a global or
regional land data assimilation system (GLDAS or NLDAS) to constrain soil properties (soil
temperature and moisture etc.); and (5) developing a new soil NOx emission scheme - BDISNP.
1115
In this work, we focus on four target areas to demonstrate the application of the UI-WRF-Chem
modeling framework: CHN-Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta. Each target
area is set up with 2 nested domains with a 12 km and 4 km spatial resolution for the outer domain
(D1) and inner domain (D2), respectively. First, we conduct a suite of sensitivity simulations over
1120  each target area to select the optimal combination of physics schemes used in the model. We have
chosen to turn off the cumulus scheme for the inner domain (D2) since we are using the traditional
G3D cumulus scheme, which is not a scale-aware scheme. We investigate the impacts of cumulus
scheme and microphysics scheme on model performance over the USA-Atlanta target area for
June 2022. Our case study shows that turning on the G3D cumulus scheme in the inner domain
1125  (D2) will produce higher precipitation than the sensitivity simulation with the G3D scheme off,
which in turn leads to lower surface PMz s concentration. Compared with surface observations of
precipitation and PMa.s concentration, the sensitivity simulation with the G3D scheme off shows
better performance than keeping it on. Due to the problem with the scale-aware GF cumulus
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scheme in the model (not coupled to the chemistry), we are not able to fully investigate the use of
1130  ascale-aware scheme on model performance in the current work. Future work will explore the use
of this scale-aware scheme with longer periods of simulation and in other target areas.

Both CHN-Beijing and ITA-Rome target areas are affected by dust long-range transport. We select
two dust intrusion events that impacted these two target areas. A dust storm originated from the
1135  Taklamakan and Gobi Deserts around 24 March 2018 and moved downwind to CHN-Beijing from
27 to 28 March 2018. For ITA-Rome, we focus on June 2023 where Saharan dust transported to
the target area. For both target areas, we conduct UI-WRF-Chem sensitivity simulations with
different chemical boundary conditions being considered using MERRA-2 data: no chemical
species considered; including dust and other aerosols. Here, we also develop a method to constrain
1140  the dust concentration for each size bin in the MERRA-2 data using AERONET data. We compare
the dust PSD from MERRA-2 data with AERONET observations to better distribute the dust
concentration in different size bins in the MERRA-2 chemical boundary conditions, based on long-
term datasets. Our results show that including the dust and other aerosols in the boundary improve
model simulated surface PM concentration and AOD during dust intrusion events for both target
1145  areas, compared to the model run without using MERRA-2 chemical boundary conditions. Using
the constrained dust concentration in the MERRA-2 data further improve model performance. This
method helps reduce the computational cost when long-range transport or regional transport affects
a target area. Otherwise, we would need to add a third nested domain with expanded domain size
to cover the pollution sources such as the dust source region.
1150
Updating land surface properties (land cover type, LAI, GVF and surface albedo) with MODIS
land data in a timely fashion improves model simulated TSK compared with MODIS LST, which
is demonstrated over the CHN-Beijing target area for July 2018. This could help better capture the
UHI phenomenon, which leads to better simulation of processes that are important for surface PM
1155  simulation. For other PTAs who have experienced rapid urbanization, updating land cover type
and other land surface properties with timely MODIS land data can be important. We also
recognize that we have not investigated the use of an urban canopy model to simulate the UHI
effect in the UI-WRF-Chem framework. The newly updated BDISNP soil NOx emission scheme
improves the simulation of NO; which subsequently affects surface nitrate. Evaluated against
1160 TROPOMI NO: VCD, the updated BDISNP soil NOx emission scheme increases NO2 VCD,
mainly over croplands in CHN-Beijing target area than the simulation using the default MEGAN
soil NOx emission scheme, which is mainly due to the application of fertilizer use. Since the ground
observations of surface NO», O3, and PM; 5 concentration are mostly located in the urban areas,
we acknowledge that our current work is limited, and efforts will need to further evaluate the
1165  impacts of this updated BDISNP scheme in the rural areas. Nevertheless, the launch of the GEMS
and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) (Zoogman et al., 2017)
satellites will provide good opportunities to further refine the BDISNP scheme. The synergy
between MAIA and GEMS/TEMPO will also provide opportunities to evaluate both gas and
aerosol composition simultaneously.
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1170
We also perform a case study over the USA-LosAngeles target area, where we tune dust emissions
inside the target area. Southwestern U.S., covering part of the USA-LosAngeles target area are
desert areas, which experience dust outbreaks. If we use the default dust emission scheme, the
model simulated surface PM and AOD overestimate ground observations. We conduct sensitivity

1175  tests to fine tune the parameters in the dust emission scheme as commonly done in the literature to
find the optimal parameter. As we have been conducting model performance evaluation, we can
do some fine-tuning over each target area to investigate the problem specific to that target area.
The case study over USA-LosAngeles gives an example of the fine-tuning work we are doing. As
part of the MAIA satellite mission, UI-WRF-Chem model outputs will also be further evaluated

1180 by the surface measurements of acrosol composition data that will be collected in various PTAs
through the Surface Particulate Matter Network (SPARTAN) (Snider et al., 2015) and other
existing networks in the target areas. Selection of physics schemes for other PTAs and other model
evaluation results will be documented in a technical guide to complement this paper.

Code and data availability

1185  The codes used in this work are available at: https://zenodo.org/records/15074108 (Zhang, 2025a).
WRF-Chem is an open-access model, which is available at: https:/github.com/wrf-
model/WRF/releases. The WRF-Chem preprocessor tools including mozbc, bio emiss,
anthro_emiss and EPA_ANTHRO_EMIS are available at: https://www?2.acom.ucar.edu/wrf-
chem/wrf-chem-tools-community. Input files for bio_emiss and U.S. EPA NEI 2017 data can also

1190  be acquired from this website. EDGAR-HTAP global anthropogenic emission data are available
at: https://edgar.jrc.ec.europa.cu/dataset htap v3. MEIC anthropogenic emission data for China
are available at: http://meicmodel.org.cn/?page id=1772&lang=en. MODIS and VIIRS data are
available at: https://ladsweb.modaps.cosdis.nasa.gov/; CALIOP data are downloaded from
https://asdc.larc.nasa.gov/project/ CALIPSO; MERRA-2, GLDAS, NLDAS and TROPOIMI and

1195 GPM data can be acquired from https://disc.gsfc.nasa.gov/. Both ground observations of
meteorology and PM data for Beijing are available at: https://quotsoft.net/air/. Ground
observations of meteorology and PM data for Los Angeles as well as PM data for Atlanta are from
https://ags.epa.gov/agsweb/airdata/download_files.html. Ground observations of meteorology
data for Rome and Atlanta are from https://www.ncei.noaa.gov/pub/data/noaa/isd-lite/. Ground

1200  observations of PM data for Rome are available from https://search.earthdata.nasa.gov/search (use
key words MAIA PM data). AERONET data can be downloaded at: https://aeronet.gsfc.nasa.gov/.
Other datasets that are wused and created in this work are available at:
https://zenodo.org/records/15239059 (Zhang, 2025b).
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